Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Informatika Global

Prediksi Kebutuhan Alat Kesehatan Rumah Sakit Menggunakan Metode Algoritma Regression Linier dan Naïve Bayes Benny Jannakha Putra; Tri Basuki Kurniawan; Darius Antoni; Ahmad Haidar Mirza
Jurnal Informatika Global Vol 11, No 2
Publisher : UNIVERSITAS INDO GLOBAL MANDIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36982/jiig.v11i2.1221

Abstract

 The hospital is a health service institution for the community with its own characteristics that require a variety of resources in carrying out its activities. One of the most important is health equipment. Medical devices are supporting aspects that support the implementation of health services. PALI Regional General Hospital is a Type D hospital, which needs to manage its medical devices. Kepmenkes Regulation No. 004 / MENKES / SK / 1/2003 concerning health policy and strategy on decentralization in the health sector states that one of the strategic objectives is the effort to organize health management in the decentralization era is to develop sub-systems of maintenance and optimization of utilization of health facilities and equipment. The amount of medical device data can only be estimated from the many or at least the available medical devices (stock), because the needs of each year are different. This results in not all the needs of medical devices being met and often additional stocks occur while the amount of APBD has been divided for each institution. So to anticipate this it is necessary to predict the need for medical devices in PALI District Hospital. If the status of medical device needs can be predicted early, the hospital can minimize data redundancy (repetition of data) and information can be up to date (update). In this study, the authors will predict medical devices in Pali District Hospital using the classification method in data mining based on the Algortima Linear Regression model to get the most accurate test results.Keywords : Prediction, Medical Devences, Linear Regression Algorithm, Naive Bayes
Perbandingan Dan Analisis Metode Klasifikasi Untuk Menentukan Konsentrasi Jurusan Indah Hidayanti; Tri Basuki Kurniawan; Afriyudi Afriyudi
Jurnal Informatika Global Vol 11, No 1
Publisher : UNIVERSITAS INDO GLOBAL MANDIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36982/jiig.v11i1.1067

Abstract

AbstractHigher education is the organizer of further education after the high school level. Five institutions of higher education, namely universities, institutes, high schools, academies and polytechnics. One of the factors that determine the quality of higher education is the percentage of students' ability to complete their studies on time. This is certainly obtained by choosing the right concentration of students during the lecture period and the academic ability of students. Determination of student concentration specifications is needed to determine the interests and talents of the students themselves. With the selection of the right concentration it is expected that students can graduate on time. At this time students have difficulty in determining the concentration of majors. At Bina Darma University in Palembang, especially in the Faculty of Computer Science, there are Informatics Engineering (IT). At the Faculty of Computer Science, the IT Study Program has a concentration of expertise such as Database, Software, and Network Infrastructure that are in accordance with the IT Study Program curriculum at Bina Darma University. Determination of concentration is carried out at the end of semester 4 or precisely the lecture period for semester 5. However, what happens is that students do not know their interests and abilities. At this time students have difficulty in determining the concentration of majors. The choice of concentration of the department is only based on the wishes of the students or by joining friends, so that there is a need for preference in helping students choose concentration. The methods used in data mining are C4.5 and Naïve Bayes by using the Rapid Miner application as a tool to classify student majors. In this study, it is know that C4.5 algorithm has a high accuracy of 48,06% and Naïve Bayes 42,79%Keywords : C4.5, Naïve Bayes, Klasifikasi Jurusan, Rapid MinerAbstrakPerguruan tinggi merupakan penyelenggara pendidikan lanjutan setelah tingkat sekolah menengah atas. Salah satu faktor yang menentukan kualitas perguruan tinggi yaitu persentasi kemampuan mahasiswa untuk menyelesaikan studi tepat pada waktunya. Hal ini tentunya didapatkan dengan pemilihan konsentrasi mahasiswa yang tepat pada masa perkuliahan serta kemampuan akademis dari mahasiswa. Penentuan spesifikasi konsentrasi mahasiswa sangat dibutuhkan untuk menentukan minat dan bakat mahasiswa itu sendiri. Dengan pemilihan konsentrasi yang tepat diharapkan mahasiswa dapat lulus tepat pada waktunya. Pada saat ini mahasiswa kesulitan dalam menentukan konsentrasi jurusan. Di Universitas Bina Darma Palembang terutama di Fakultas Ilmu Komputer, terdapat Program Studi Teknik Informatika (TI). Pada Fakultas Ilmu Komputer ini, Program Studi TI mempunyai konsentrasi keahlian seperti Database, Software, dan Jaringan Infrastructure yang  sesuai dengan kurikulum Program Studi TI di Universitas Bina Darma. Penentuan konsentrasi jurusan yaitu pada akhir semester 4 atau tepatnya masa perkuliahan untuk semester 5. Akan tetapi yang terjadi yaitu mahasiswa tidak tahu minat dan kemampuannya masing-masing. Saat ini mahasiswa kesulitan dalam menentukan pemilihan konsentrasi jurusan. Pemilihan konsentrasi jurusan hanya berdasarkan pada keinginan mahasiswa ataupun ikut-ikutan teman, untuk itu dirasa perlu adanya preferensi dalam membantu mahasiswa memilih konsentrasi. Metode yang digunakan yaitu C4.5 dan Naïve Bayes dengan menggunakan aplikasi Rapid Miner sebagai alat bantu untuk mengklasifikasikan penjurusan mahasiswa. Pada penelitian ini diketahui algoritma C4.5 memiliki tinggkat akurasi 48,06 % dan naïve bayes 42,79%.Kata kunci: C4.5, Naïve Bayes, Klasifikasi Jurusan, Rapid Miner
Sistem Penentuan Lokasi Pusat Layanan Terpadu Bagi Penderita Penyakit Demam Berdarah Dengan Menggunakan K-Means Clustering Iski Zaliman; Tri Basuki Kurniawan; Darius Antoni
Jurnal Informatika Global Vol 11, No 2
Publisher : UNIVERSITAS INDO GLOBAL MANDIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36982/jiig.v11i2.1225

Abstract

Puskesmas is a functional organizational unit that organizes comprehensive, integrated, equitable health efforts that are acceptable and affordable to the community. The function of the puskesmas is to provide health services to the community through the Community Health Efforts (UKM) and Individual Health Efforts (UKP) programs which are at the forefront of providing health services to the community, especially the prevention and treatment of diseases. The disease is divided into 3 types namely infectious diseases or diseases caused by germs that attack the human body. This research will attempt to handle infectious diseases, namely dengue hemorrhagic fever (DHF). Dengue fever or dengue fever (abbreviated as DHF) is an infection caused by dengue virus. Mosquitoes or some types of mosquitoes transmit (or spread) dengue virus. Then a computerized analysis using data mining software that supports the flow of data and information in accordance with the needs of handling dengue fever from these processes and the selection of a more suitable method is used that is using K-Means clustering.Keywords : The location determination system, dengue faver, K-Means Clusterring