Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Applied Information System and Management

Analysis of the Use of Artificial Neural Network Models in Predicting Bitcoin Prices Muhammad Sahi; Muhammad Faisal; Yunifa Miftachul Arif; Cahyo Crysdian
Applied Information System and Management (AISM) Vol 6, No 2 (2023): Applied Information System and Management (AISM)
Publisher : Depart. of Information Systems, FST, UIN Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/aism.v6i2.29648

Abstract

Bitcoin is one of the fastest-growing digital currencies or cryptocurrencies in the world. However, the highly volatile Bitcoin price poses a very extreme risk for traders investing in cryptocurrencies, especially Bitcoin. To anticipate these risks, a prediction system is needed to predict the fluctuations in cryptocurrency prices. Artificial Neural Network (ANN) is a relatively new model discovered and can solve many complex problems because the way it works mimics human nerve cells. ANN has the advantage of being able to describe both linear and non-linear models with a fairly wide range. This research aims to determine the best performance and level of accuracy of the ANN model using the Back-Propagation Neural Network (BPNN) algorithm in predicting Bitcoin prices. This study uses Bitcoin price data for the period 2020 to 2023 taken from the CoinDesk market. The results of this study indicate that the ANN model produces the best performance in the form of four input nodes, 12 hidden nodes, and one output node (4-12-1) with an accuracy rate of around 3.0617175%.
Enhancing Repeat Buyer Classification with Multi Feature Engineering in Logistic Regression Mauludiah, Siska Farizah; Crysdian, Cahyo; Arif, Yunifa Miftachul
Applied Information System and Management (AISM) Vol 8, No 1 (2025): Applied Information System and Management (AISM)
Publisher : Depart. of Information Systems, FST, UIN Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/aism.v8i1.45025

Abstract

This study presents a novel approach to improving repeat buyer classification on e-commerce platforms by integrating Kullback-Leibler (KL) divergence with logistic regression and focused feature engineering techniques. Repeat buyers are a critical segment for driving long-term revenue and customer retention, yet identifying them accurately poses challenges due to class imbalance and the complexity of consumer behavior. This research uses KL divergence in a new way to help choose important features and evaluate the model, making it easier to understand and more effective at classifying repeat buyers, unlike traditional methods. Using a real-world dataset from Indonesian e-commerce with 1,000 records, divided into 80% for training and 20% for testing, the study uses logistic regression along with techniques like SMOTE for oversampling, class weighting, and regularization to fix issues with data imbalance and overfitting. Model performance is assessed using accuracy, precision, recall, F1-score, and KL divergence. Experimental results indicate that the KL-enhanced logistic regression model significantly outperforms the baseline, especially in balancing precision and recall for the minority class of repeat buyers. The unique contribution of this work lies in its synergistic use of KL divergence in both the feature engineering and evaluation phases, offering a robust, interpreted, and data-efficient solution. For e-commerce businesses, the findings translate into improved targeting of high-value customers, better personalization of marketing efforts, and more strategic allocation of resources. This research offers practical tips for enhancing predictive customer analytics and supports data-driven decision-making in digital commerce environments.
Enhancing Repeat Buyer Classification with Multi Feature Engineering in Logistic Regression Mauludiah, Siska Farizah; Crysdian, Cahyo; Arif, Yunifa Miftachul
Applied Information System and Management (AISM) Vol. 8 No. 1 (2025): Applied Information System and Management (AISM)
Publisher : Depart. of Information Systems, FST, UIN Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/aism.v8i1.45025

Abstract

This study presents a novel approach to improving repeat buyer classification on e-commerce platforms by integrating Kullback-Leibler (KL) divergence with logistic regression and focused feature engineering techniques. Repeat buyers are a critical segment for driving long-term revenue and customer retention, yet identifying them accurately poses challenges due to class imbalance and the complexity of consumer behavior. This research uses KL divergence in a new way to help choose important features and evaluate the model, making it easier to understand and more effective at classifying repeat buyers, unlike traditional methods. Using a real-world dataset from Indonesian e-commerce with 1,000 records, divided into 80% for training and 20% for testing, the study uses logistic regression along with techniques like SMOTE for oversampling, class weighting, and regularization to fix issues with data imbalance and overfitting. Model performance is assessed using accuracy, precision, recall, F1-score, and KL divergence. Experimental results indicate that the KL-enhanced logistic regression model significantly outperforms the baseline, especially in balancing precision and recall for the minority class of repeat buyers. The unique contribution of this work lies in its synergistic use of KL divergence in both the feature engineering and evaluation phases, offering a robust, interpreted, and data-efficient solution. For e-commerce businesses, the findings translate into improved targeting of high-value customers, better personalization of marketing efforts, and more strategic allocation of resources. This research offers practical tips for enhancing predictive customer analytics and supports data-driven decision-making in digital commerce environments.
Analysis of the Use of Artificial Neural Network Models in Predicting Bitcoin Prices Sahi, Muhammad; Faisal, Muhammad; Arif, Yunifa Miftachul; Crysdian, Cahyo
Applied Information System and Management (AISM) Vol. 6 No. 2 (2023): Applied Information System and Management (AISM)
Publisher : Depart. of Information Systems, FST, UIN Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/aism.v6i2.29648

Abstract

Bitcoin is one of the fastest-growing digital currencies or cryptocurrencies in the world. However, the highly volatile Bitcoin price poses a very extreme risk for traders investing in cryptocurrencies, especially Bitcoin. To anticipate these risks, a prediction system is needed to predict the fluctuations in cryptocurrency prices. Artificial Neural Network (ANN) is a relatively new model discovered and can solve many complex problems because the way it works mimics human nerve cells. ANN has the advantage of being able to describe both linear and non-linear models with a fairly wide range. This research aims to determine the best performance and level of accuracy of the ANN model using the Back-Propagation Neural Network (BPNN) algorithm in predicting Bitcoin prices. This study uses Bitcoin price data for the period 2020 to 2023 taken from the CoinDesk market. The results of this study indicate that the ANN model produces the best performance in the form of four input nodes, 12 hidden nodes, and one output node (4-12-1) with an accuracy rate of around 3.0617175%.