Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : INDONESIAN JOURNAL OF APPLIED PHYSICS

Interpretasi Struktur Bawah Permukaan Jalur Sesar Opak Berdasarkan Model Suseptibilitas dan Second Vertical Derivative dengan Metode Geomagnet Desi Novi Dayana; Nugroho Budi Wibowo; Denny Darmawan
INDONESIAN JOURNAL OF APPLIED PHYSICS Vol 8, No 02 (2018) : IJAP Volume 8 ISSUE 02 YEAR 2018
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (829.047 KB) | DOI: 10.13057/ijap.v8i2.21428

Abstract

Tujuan dari penelitian ini adalah untuk mengetahui struktur bawah permukaan jalur Sesar Opak berdasarkan model suseptibilitas dan SVD dengan metode geomagnet. Pengambilan data dilakukan menggunakan Proton Precession Magnetometer Geometric tipe G-856 dengan 77 titik pengukuran dan jarak antar titik pengukuran +2 km. Pengolahan data dilakukan melalui koreksi variasi harian, koreksi IGRF, SVD, dan reduksi ke kutub. Pemodelan dilakukan dengan menganalisis anomali medan magnet yang telah direduksi ke kutub. Hasil pemodelan solid model menunjukkan bahwa Formasi Semilir dengan nilai suseptibilitas (0 – 100) ×10-3, Formasi Merapi Muda dengan nilai suseptibilitas (0 – 2) ×10-3, dan Formasi Nglanggran dengan nilai suseptibilitas (0,6 – 70) ×10-3. Hasil pemodelan SVD dan solid model menunjukkan keberadaan Sesar Opak.
Compressibility Effects on Turbulent Heat Transfer of Natural Convection in a Square Cavity Rida Siti Nur'aini Mahmudah; Restu Widiatmono; Denny Darmawan
INDONESIAN JOURNAL OF APPLIED PHYSICS Vol 13, No 2 (2023): IJAP Volume 13 ISSUE 02 YEAR 2023
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijap.v13i2.75790

Abstract

Heat transfer in turbulent flows is one of the essential topics in power plants and thermal-based engineering. This study aims to analyze the effects of density changes due to heat transfer in a turbulent environment—which is usually neglected because it can cause instability in a simulation. We simulate an available experimental case of turbulent heat transfer of air with OpenFOAM: one with an incompressible approach (no density change) and another with a compressible treatment. The simulation geometry is a 0.75 × 0.75 m2 square cavity, where its left and right walls are kept at a temperature difference of 40 K. We compare and analyze the temperature, velocity, and turbulence kinetic energy profiles of both simulation results against the experimental data. We found that from all qualitative and quantitative comparisons, the change in density plays a vital role in turbulent heat transfer. The compressible treatment gives better results than the incompressible: the neglection of density change causes a significant difference with the experimental data. Thus, we strongly recommended incorporating compressibility in simulating heat transfer in turbulent flows.