Claim Missing Document
Check
Articles

Found 12 Documents
Search
Journal : Journal of Engineering and Technological Sciences

Characteristics of NOM Released to Water from Different Forest and Agricultural Soils Hongjie Gui; Fusheng Li; Yongfen Wei; Toshiro Yamada; Reni Desmiarti
Journal of Engineering and Technological Sciences Vol. 48 No. 5 (2016)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2016.48.5.9

Abstract

The characteristics of natural organic matter (NOM) released to water from a soil environment were investigated based on the release potential and the quality indexes of SUVA, fluorescence EEM and molecular weight distribution using eight forest and agricultural soils collected from a representative river catchment (Kani River catchment in Gifu, Japan). The content of organic matter (OM) and its release potential to water differed obviously with type of soil origin, in the following order: vegetable field (VF) < paddy field (PF) < broadleaf forest (BF) < coniferous forest (CF) and VF < PF < CF < BF, respectively. For the released NOM, SUVA under different pH conditions decreased in the following order: neutral condition [3.6-24.0 m-1/(mg/L)] > basic condition [3.5-8.0 m-1/(mg/L)] > acidic condition [2.5-3.0 m-1/(mg/L)]. Humic acids (P1), fulvic acids (P2) and protein-like substances (P3) were the main components of the NOM released under neutral condition. The proportion of P1 and P2 released from the forest soils was lower than that from the agricultural soils. Marked differences in UV-absorbing constituents of NOM between forest and agricultural soils were found in the peak with a molecular weight of about 9800 g/mol identified as PSS (polystyrene sulfonate).
Disinfection Performance against Salmonella Typhi in Water by Radio Frequency Inductive Couple Plasma System Reni Desmiarti; Ariadi Hazmi; Fusheng Li
Journal of Engineering and Technological Sciences Vol. 49 No. 6 (2017)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2017.49.6.3

Abstract

The disinfection performance of the radio frequency inductively coupled plasma (RFICP) system against Salmonella Typhi in water was examined using continuous flow experiments. The evaluation was based on disinfection efficiency, death rate constant, disinfection yield, and energy consumption. For all experiments the electromagnetic flux generated in the plasma reactor varied from 4 to 6 W/cm2. The disinfection efficiency and death rate constant of Salmonella Typhi decreased with the increase of the initial number of Salmonella Typhi bacteria. The disinfection yield increased from 784 to 1889 CFU/KWh and the energy consumption decreased from 0.28 to 0.07 KWh/L with the flowrate increasing from 5 to 20 mL/minute. The flowrate is an important parameter in predicting disinfection performance against pathogenic bacteria in water to design drinking water treatment plants.