Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : KOMPUTEK

PERANCANGAN APLIKASI LOKASI TAMBAL BAN DI PONOROGO BERBASIS ANDROID Irfan Khoirul Arifin; Aliyadi Aliyadi; Yovi Litanianda
KOMPUTEK Vol 1, No 1 (2017): Oktober
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.616 KB) | DOI: 10.24269/jkt.v1i1.113

Abstract

Jumlah kendaraan di Indonesia terus meningkat setiap tahunnya. Hal ini juga terjadi di Kabupaten Ponorogo. Hal tersebut juga akan berbanding lurus dengan banyak orang yang mengalami masalah dengan kendaraan mereka, seperti mendapati ban bocor karena tertusuk paku atau sebab lain. Dan juga akan meningkatkan kebutuhan jasa tambal ban. Bagi pengendara yang kurang mengetahui daerah sekitar ketika mengalami kerusakan ban motor, maka tentunya untuk mencari tempat tambal ban terdekat akan cukup menyulitkan. Oleh karena itu pada penelitian ini dikembangkan media informasi berupa aplikasi berbasis Android untuk memetakan lokasi – lokasi tambal ban yang ada di Ponorogo, sekaligus mencari tambal ban terdekat berdasarkan lokasi pengendara. Aplikasi ini berupa layanan berbasis lokasi (Location Based Service) kepada pengendara dengan memberitahu letak tambal ban terdekat berserta informasi terkait. Berdasarkan hasil pengujian aplikasi ini mampu membantu pengguna mencari tambal ban dalam bentuk peta lokasi – lokasi tambal ban, daftar bengkel tambal ban, dan daftar bengkel tambal ban terdekat beserta jarak dari lokasi pengguna. Aplikasi ini juga mampu menunjukkan informasi terkait sekaligus menunjukkan rute perjalanan dari lokasi pengguna dengan lokasi tambal ban yang dituju dengan memanfaatkan aplikasi google maps.
IMPLEMENTASI TENSOR FLOW LITE PADA TEACHABLE UNTUK IDENTIFIKASI TANAMAN AGLONEMA BERBASIS ANDROID Muhammad Bagus Baihaqi; Yovi Litanianda; Andy Triyanto
KOMPUTEK Vol 6, No 1 (2022): April
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/jkt.v6i1.1143

Abstract

Aglonema or sri fortune has various types with various shapes, patterns and colors. Various types and more and more due to the many crossing processes carried out by owners and lovers of aglonema plants. For ordinary people who do not have insight into aglonema, it will be difficult to distinguish aglonema plants because the shapes, patterns and colors have similarities. It takes a Teachable Machine system with a complex but more sophisticated method that is able to recognize plants with a higher level of accuracy. The machine learning process is carried out on a computer to identify image data into classification results in the form of predictions. Tensorflow lite is a machine learning library specially designed for object recognition. Therefore, researchers are encouraged to create an Android-based mobile application that is able to recognize aglonema plants quickly, easily and accurately. 
PERANCANGAN SISTEM SELEKSI ATLET BOLAVOLI MENGGUNAKAN METODE SAW PADA SEKOLAH BOLAVOLI KUSUMA BHIRAWA Taufiq Abidin; Yovi Litanianda; Andy Triyanto
KOMPUTEK Vol 5, No 2 (2021): Oktober
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/jkt.v5i2.828

Abstract

The basic technique of volleyball itself is one of the most important elements in the game of volleyball, without mastering good basic techniques, the game cannot be played perfectly, the basic techniques of volleyball include serving, passing, smash and block (dam). Based on an interview with Coach at SBV, Kusuma Bhirawa who coaches players at the age of U-18 teenagers, explained that the selection of athletes in participating in the event is carried out according to the coach's feelings during training. After making direct observations at the Kusuma Bhirawa volleyball school with the existing problems, a decision support system will be built for the selection of volleyball athletes using the SAW method. SAW (Simple Additive Weighting) is a method in a decision support system with a weighted summation of the performance ratings of each alternative on all attributes. The alternative that has the highest value is the best alternative proposed. The criteria needed by the SbV trainer Kusuma Bhirawa in anthropometric measurements are height, physical fitness test criteria consisting of 60 m running, 60 sec pull ups, 60 sec sit ups, vertical jump, 1200 m run. volleyball smash technique criteria, passing over, passing down, serving and blocking. From the results of the correlation test that has been tried to get the correlation of the recommendation of the core player list from the application system compared to the player list from the coach with a value of 83.3%. Therefore, these results show that the SAW method has a fairly good correlation when used to determine the selection of volleyball athletes