Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Computer Networks, Architecture and High Performance Computing

Implementation of Fuzzy Logic for Chili Irrigation Integrated with Internet of Things Angga Prasetyo; Arief Rahman Yusuf; Yovi Litanianda; Sugianti; Fauzan Masykur
Journal of Computer Networks, Architecture and High Performance Computing Vol. 5 No. 2 (2023): Article Research Volume 5 Issue 2, July 2023
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v5i2.2518

Abstract

Chili, mustard greens, and tomatoes have always been farmers' favored crops, despite their high water and labor demands. Adapt to these conditions by utilizing smart agriculture systems (SAS) agricultural techniques that involve technology such as automatic irrigation that regulates watering based solely on routine, regardless of land conditions. This type of control during the transitional season can lead to root rot and fungisarium disease on chile plants. In the form of an embedded system with internet of things (IoT) monitoring, a system incorporating artificial intelligence such as fuzzy logic is proposed as a solution. Fuzzy logic will regulate irrigation based on the land's humidity and temperature using computational mathematics. Beginning with the fuzzyification stage to map the sensor's temperature and humidity input values, fuzzy logic is applied. The creation of an inference engine in the NodeMcu 8266 microcontroller to interpret fuzzy rule statements in the form of aggregation of minimum conditions with the AND operator, followed by the combination of a single set value of 0 and 1 in the fuzzy system to produce an appropriate actuator response After the entire system has been prototyped, testing is conducted to determine the responsiveness of the fuzzy program code to changes in the simulated agricultural cultivation land ecosystem. This study found that the fuzzy logic program code embedded in the nodeMCU8266 microcontroller effectively controls the spraying duration of the pump in response to various simulated environmental conditions within 3.6 seconds.
Integration Of Open CV LBF Model To Detect Masks In Health Protocol Surveillance Systems Yovi Litanianda; Moh Bhanu Setyawan; Adi Fajaryanto C; Ismail Abdurrozzaq Z; Charisma Wahyu Aditya
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 1 (2024): Article Research Volume 6 Issue 1, January 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i1.3460

Abstract

The Corona Viruses Diseases pandemic that was rife in early 2020 and hit many countries caused discipline to be applied to health protocols. The prevention of physical contact between humans gave rise to new traditions in aspects of human life. Almost all public facilities in Indonesia require visitors to wear masks as a means of preventing exposure to viruses in the air. However, this advice is often ignored by some people. In addition to endangering many people, this condition also makes public facility managers need extra resources in the form of time, energy and costs to ensure this health protocol is implemented. The existence of these problems triggers the emergence of innovations to present a system that provides assurance and convenience in ensuring compliance with health protocols for the use of masks through creative and effective methods. This method is done by utilizing CCTV cameras or webcams at the entrance equipped with an Artificial Intelligence program designed to be able to detect the use of masks on visitors to public facilities, and without the need for other sensors. The detection system is built on the concept of facial biometrics and utilizes the OpenCV LBF model to detector landmarks on a person's face. Based on tests conducted through several scenario, it can be said that the open CV LBF model successfully identified the use of masks within 35 seconds, increasing the reading distance to 2 meters making the process longer. In addition, in indoor lighting conditions, the system experienced 1 detection error with a process time of 18 seconds, while for well-light outdoor conditions the system managed to detect all objects within 10 seconds.