Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Journal of Geoscience, Engineering, Environment, and Technology

Stratigraphy Seismic and sedimentation Development of Middle Baong Sand, Aru Field, North Sumatera Basin Natasia, Nanda; Syafri, Ildrem; Alfadli, Muhammad Kurniawan; Arfiansyah, Kurnia
Journal of Geoscience, Engineering, Environment, and Technology Vol 1 No 1 (2016): JGEET Vol 01 No 01 : December (2016)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1297.511 KB) | DOI: 10.24273/jgeet.2016.11.7

Abstract

This paper defines the stratigraphic sequence focused on Middle Baong Sand. The analyses aim to understand the sedimentation pattern regarding to sequence stratigraphy model including its lateral and vertical succession based on seismic and well data. The study can be used in ranking the prospect for new oil field. Based on the analyses in 39 seismic sections and 2 wireline log, the area are consist of three depositional sequences, namely sequence I (consist of HST I) Sequence II (consist of TST II and LST II), and Sequence III (consist of TST III).  Baong Formation are deposited when the sea level are rising regionally at Middle Miocene (N7-N15) makes the sediment deposited in deep water environment. while Middle Baong Sand are deposited in the minor falling stage placed at N13 (Middle of Middle Miocene). In this episode, there is a change in depositional setting from bathyal to middle neritic. Clastic origin of this deposits were interpreted came from South-South West direction or from Bukit Barisan where at that time is started to uplift.
Geoelectricity Data Analysis For Identification The Aquifer Configuration In Bandorasawetan, Cilimus, Kuningan, West Java Province Alfadli, Muhammad Kurniawan; Natasia, Nanda
Journal of Geoscience, Engineering, Environment, and Technology Vol 2 No 4 (2017): JGEET Vol 02 No 04 : December (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1252.759 KB) | DOI: 10.24273/jgeet.2017.2.4.779

Abstract

Indonesian water consumption is influenced by the people growth. One of Water consumption fulfilment by groundwater aquifer. Bandorasawetan is one of the areas which predicted have proper potential due to located in East of Mt. Ceremai that predicted recharge area. Based on regional geological data, Bandorasawetan is an undifferentiated young volcanic product which consists of lava, breccia, lapilli, and tuffaceous sand. Geophysics method for groundwater prediction is 2-D geoelectrical with Wenner – Schlumberger configuration. The result of acquisition is obtained resistivity value from 0 - >1000 Ohm. m. Interpretation from data distribution is consist of two resistivity range that describes lithology on the research area, such as: 0 – 150 Ohm.m contributed as aquiqlud with tuffaceous sand lithology and > 150 Ohm.m interpreted as volcanic breccia lithology. Volcanic breccia has a role as aquifer in study area, the conclusion is distribution of resistivity value with range > 150 Ohm.m be the reference to developing groundwater resource in study area. Depth of aquifer is varying, deeper to the east. In Line – 1, depth of the aquifer is 48 meters and in Line – 2, depth of aquifer be 60 meters.
Stratigraphy Seismic and sedimentation Development of Middle Baong Sand, Aru Field, North Sumatera Basin Nanda Natasia; Ildrem Syafri; Muhammad Kurniawan Alfadli; Kurnia Arfiansyah
Journal of Geoscience, Engineering, Environment, and Technology Vol. 1 No. 1 (2016): JGEET Vol 01 No 01 : December (2016)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1297.511 KB) | DOI: 10.24273/jgeet.2016.11.7

Abstract

This paper defines the stratigraphic sequence focused on Middle Baong Sand. The analyses aim to understand the sedimentation pattern regarding to sequence stratigraphy model including its lateral and vertical succession based on seismic and well data. The study can be used in ranking the prospect for new oil field. Based on the analyses in 39 seismic sections and 2 wireline log, the area are consist of three depositional sequences, namely sequence I (consist of HST I) Sequence II (consist of TST II and LST II), and Sequence III (consist of TST III). Baong Formation are deposited when the sea level are rising regionally at Middle Miocene (N7-N15) makes the sediment deposited in deep water environment. while Middle Baong Sand are deposited in the minor falling stage placed at N13 (Middle of Middle Miocene). In this episode, there is a change in depositional setting from bathyal to middle neritic. Clastic origin of this deposits were interpreted came from South-South West direction or from Bukit Barisan where at that time is started to uplift.
Geoelectricity Data Analysis For Identification The Aquifer Configuration In Bandorasawetan, Cilimus, Kuningan, West Java Province Muhammad Kurniawan Alfadli; Nanda Natasia
Journal of Geoscience, Engineering, Environment, and Technology Vol. 2 No. 4 (2017): JGEET Vol 02 No 04 : December (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1252.759 KB) | DOI: 10.24273/jgeet.2017.2.4.779

Abstract

Indonesian water consumption is influenced by the people growth. One of Water consumption fulfilment by groundwater aquifer. Bandorasawetan is one of the areas which predicted have proper potential due to located in East of Mt. Ceremai that predicted recharge area. Based on regional geological data, Bandorasawetan is an undifferentiated young volcanic product which consists of lava, breccia, lapilli, and tuffaceous sand. Geophysics method for groundwater prediction is 2-D geoelectrical with Wenner – Schlumberger configuration. The result of acquisition is obtained resistivity value from 0 - >1000 Ohm. m. Interpretation from data distribution is consist of two resistivity range that describes lithology on the research area, such as: 0 – 150 Ohm.m contributed as aquiqlud with tuffaceous sand lithology and > 150 Ohm.m interpreted as volcanic breccia lithology. Volcanic breccia has a role as aquifer in study area, the conclusion is distribution of resistivity value with range > 150 Ohm.m be the reference to developing groundwater resource in study area. Depth of aquifer is varying, deeper to the east. In Line – 1, depth of the aquifer is 48 meters and in Line – 2, depth of aquifer be 60 meters.
Resistivity Data Modeling for Subsurface Volcanostratigraphy Construction of Cibadak Sub-Watershed, Bogor, West Java, Indonesia. Muhammad Kurniawan Alfadli; Undang Mardiana; Nanda Natasia; Febriwan Mohammad; Deden Zaenudin Mutaqin
Journal of Geoscience, Engineering, Environment, and Technology Vol. 6 No. 2 (2021): JGEET Vol 06 No 02 : June (2021)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2021.6.2.2274

Abstract

In Mt. Salak, there are six volcanic facies divided by eruption time seen from geomorphology data analysis and to identified the subsurface layer DC Resistivity method is applied. Beside resistivity, geostatistical parameters also influence the result model interpretation, so for obtain best model correlation parameters such as tilting, surfacing, variogram, grid method, and logarithmic distribution is applied. Using 18 points of acquisition data subsurface model is produce and then section model made to describe vertical resistivity distribution then correlated with facies lithology model. Based on that, produce three facies resistivity type namely: 0 – 100 Ohm.m (Low Resistivity Value) Interpreted as pyroclastic material composed as tuff and breccia that lies under lava. 100 – 300 Ohm.m (Medium Resistivity Value) Interpreted as breccia lithology type. Harder that pyroclastic material due to by this product is avalanches of lava. And >300 Ohm.m (High Resistivity Value) Interpreted as lava lithology that lies at high elevation and the hardest lithology in this area. From the model, pyroclastic layer that is modeled found at low elevation and based on the direction it described as oldest facies layer, but at the bottom of this layer lies high resistivity value that unknown product. It can be Mt. Pangrango product due to at low elevation predicted as combine area product from product of Mt. Salak and Pangrango. High resistivity value show lava lithology and lava facies located in high elevation and medium resistivity describe breccia lithology as avalanche product of lava (youngest pyroclastic facies) and found at 500 – 100 meters msl.