Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Forum Geografi

Utilization of Remote Sensing Techniques for Monitoring and Evaluation of Solo Watershed Management Gunawan, Totok
Forum Geografi Vol 17, No 2 (2003)
Publisher : Forum Geografi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research is an application of remote sensing technology for monitoring and evaluation of watershed management, which was conducted is Solo Watershed, Central and East Java. The research objectives were 1) to investigate the capability of photomorphic analysis of Landsat Thematic Mapper (TM) and Enhanced Themmatic Mapper (ETM +) imagery as the basic for analyzes of landforms, landuse, and morphometry of the land surface; 2) to calculate the overland flow – peak discharge and erosion – sediment yield as indicators of land degradation of the area; 3) to use the indicators as set of instrument for monitoring and evaluation of watershed management. In this study, visual interpretation by means of on-screen digilization of the digital imagery was carried out in order to identify and to delineate land parameters using photomorphic approach. Based on the photomorphic analysis, several image – based parameters such as relief topography, physical soil characteristic, litho – stratigraphy, and vegetation cover were integrated with other themati maps in a geographic information system (GIS) environment. Estimation of overland flow (C) based on Cook methods (1942) and calculation of peak disccharge (Qmax) based on rational method (Qmax = C. I. A) were applied. Meanwhile, estimation of surface erosion was carried out using Universal Soil Loss Equation (USLE, A = R. K. L. S. CP). The sediment yield (Sy) was estimated using seddiment delivery ratio ( SDR) based on the following formula: Sy = [A + (25% x A)] x SDR. Both pairs of C – Qmax and A – Sy, were utilized as the basis for monitoring and evaluation of the watershed. The combination of C – Qmax and A – Sy were also used as the basis for selection of stream gauge setting / AWLR within particular sub – catchment. It was found that the photomorphic analysis is only color/tone, slope aspects, pattern, and texture, unit boundaries between volcanic – origin landscape (Wilis volcanic complex) and folded – hills landforms (Kendeng ridges) can be delineated. Within the volcanic features, coarse – textured units indicating pyroclastic materials with high drainage density (western part of Lawu volcano). In terms of calculated overland flow and peak discharge of 100 sub – catchment within the Solo Watershed, it was found that there are four sub – catchment with relatively high values (> 0.60 and > 1200 m3s1 for overland flow and peak discharge repectively), namely Samin (Karanganyar), Keduang (Wonogiri), Dengkeng (Klaten), and Sungkur (Ponorogo). Five sub-catchment might be categorized as having moderate peak discharge (Qmax ranges from 1000 – 1200 m3s1), namely Ketonggo (Ngawi), Keyang (Ponorogo), Gandong – Semawur (Magetan), Pepe (Boyolali), and Soko (Bojonegoro), while the remaining 91 sub-catchments are categorized as having low peak discharge. Based on the calculation of erosion and sediment yield, there was no sub-catchment with moderate category (60 – 180 ton ha1yr1), i.e. Samin (Karanganyar), Gonggong (Magetan), Ngisip and Kedung Cilik (Tuban), and Pepe (Boyolali). The other 95 sub-catchment might be categorized as gentle to good. In terms of values representing overland flow – flood and erosion – sediment yield, there are several sub-catchments require first priority in monitoring and evaluation, and are recommended as suitable sites for stream gauge setting, i.e. Samin (Karanganyar), Gonggong (Magetan), Ngisip and Kedung Cilik (Tuban).
Multidimensional Scaling Approach to Evaluate the Level of Community Forestry Sustainability in Babak Watershed, Lombok Island, West Nusa Tenggara Nandini, Ryke; Kusumandari, Ambar; Gunawan, Totok; Sadono, Ronggo
Forum Geografi Vol 31, No 1 (2017): July 2017
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v31i1.3371

Abstract

Community forestry in Babak watershed is one of the efforts to reduce critical land area. The aim of this research was to evaluate the level of community forestry sustainability in both of community forest (HKm) and private forest in Babak watershed. Multidimensional scaling (MDS) was used to analyse the level of community forest sustainability based on the five dimensions of ecology, economy, social, institutional, and technology as well as 29 attributes. Leverage analysis was used to know the sensitive attributes of sustainability, while Monte Carlo analysis and goodness of fit was used to find the accuracy of MDS analysis. The result shows that HKm was in moderate sustainability level (sustainability index 54.08%) and private forest was in less sustainability level (sustainability index 48.53%). Furthermore, the ecology and technology in HKm were classified as less sustainable, while the institution and technology in private forest were considered less sustainable. There were 11 sensitive attributes of HKm and 19 sensitive attributes of private forest. The priorities of attribute improvement in HKm include land recovering (the dimension of ecology) and cooperative development (the dimension of technology). In private forest, the priorities of attribute improvement include leadership capacity building (the institutional dimension) and also the use of silviculture intensive and soil conservation (the dimension of technology).
Modeling of Percentage of Canopy in Merawu Catchment Derived From Various Vegetation Indices of Remotely Sensed Data Sulistyo, Bambang; Gunawan, Totok; Hartono, H; Danoedoro, Projo
Forum Geografi Vol 27, No 1 (2013): July 2013
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v27i1.5075

Abstract

The research was aimed at studying Percentage of Canopy mapping derived from various vegetation indices of remotely-sensed data int Merawu Catchment. Methodology applied was by analyzing remote sensing data of Landsat 7 ETM+ image to obtain various vegetation indices for correlation analysis with Percentage of Canopy measured directly on the field (PTactual) at 48 locations. These research used 11 (eleven) vegetation indices of remotely-sensed data, namely ARVI, MSAVI, TVI, VIF, NDVI, TSAVI, SAVI, EVI, RVI, DVI and PVI. The analysis resulted models (PTmodel) for Percentage of Canopy mapping. The vegetation indices selected are those having high coefficient of correlation (>=0.80) to PTactual. Percentage of Canopy maps were validated using 39 locations on the field to know their accuracies. Percentage of Canopy map (PTmodel) is said to be accurate when its coefficient of correlation value to PTactual is high (>=0.80). The research result in Merawu Catchment showed that from 11 vegetation indices under studied, there were 6 vegetation indices resulted high accuracy of Percentage of Canopy maps (as shown in the value of coefficient of correlation as >=0.80), i.e. TVI, VIF, NDVI, TSAVI, RVI dan SAVI, while the rest, namely ARVI, PVI, DVI, EVI and MSAVI, have r values of < 0.80.
Utilization of Remote Sensing Techniques for Monitoring and Evaluation of Solo Watershed Management Gunawan, Totok
Forum Geografi Vol 17, No 2 (2003)
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v17i2.532

Abstract

This research is an application of remote sensing technology for monitoring and evaluation of watershed management, which was conducted is Solo Watershed, Central and East Java. The research objectives were 1) to investigate the capability of photomorphic analysis of Landsat Thematic Mapper (TM) and Enhanced Themmatic Mapper (ETM +) imagery as the basic for analyzes of landforms, landuse, and morphometry of the land surface; 2) to calculate the overland flow – peak discharge and erosion – sediment yield as indicators of land degradation of the area; 3) to use the indicators as set of instrument for monitoring and evaluation of watershed management. In this study, visual interpretation by means of on-screen digilization of the digital imagery was carried out in order to identify and to delineate land parameters using photomorphic approach. Based on the photomorphic analysis, several image – based parameters such as relief topography, physical soil characteristic, litho – stratigraphy, and vegetation cover were integrated with other themati maps in a geographic information system (GIS) environment. Estimation of overland flow (C) based on Cook methods (1942) and calculation of peak disccharge (Qmax) based on rational method (Qmax = C. I. A) were applied. Meanwhile, estimation of surface erosion was carried out using Universal Soil Loss Equation (USLE, A = R. K. L. S. CP). The sediment yield (Sy) was estimated using seddiment delivery ratio ( SDR) based on the following formula: Sy = [A + (25% x A)] x SDR. Both pairs of C – Qmax and A – Sy, were utilized as the basis for monitoring and evaluation of the watershed. The combination of C – Qmax and A – Sy were also used as the basis for selection of stream gauge setting / AWLR within particular sub – catchment. It was found that the photomorphic analysis is only color/tone, slope aspects, pattern, and texture, unit boundaries between volcanic – origin landscape (Wilis volcanic complex) and folded – hills landforms (Kendeng ridges) can be delineated. Within the volcanic features, coarse – textured units indicating pyroclastic materials with high drainage density (western part of Lawu volcano). In terms of calculated overland flow and peak discharge of 100 sub – catchment within the Solo Watershed, it was found that there are four sub – catchment with relatively high values (> 0.60 and > 1200 m3s1 for overland flow and peak discharge repectively), namely Samin (Karanganyar), Keduang (Wonogiri), Dengkeng (Klaten), and Sungkur (Ponorogo). Five sub-catchment might be categorized as having moderate peak discharge (Qmax ranges from 1000 – 1200 m3s1), namely Ketonggo (Ngawi), Keyang (Ponorogo), Gandong – Semawur (Magetan), Pepe (Boyolali), and Soko (Bojonegoro), while the remaining 91 sub-catchments are categorized as having low peak discharge. Based on the calculation of erosion and sediment yield, there was no sub-catchment with moderate category (60 – 180 ton ha1yr1), i.e. Samin (Karanganyar), Gonggong (Magetan), Ngisip and Kedung Cilik (Tuban), and Pepe (Boyolali). The other 95 sub-catchment might be categorized as gentle to good. In terms of values representing overland flow – flood and erosion – sediment yield, there are several sub-catchments require first priority in monitoring and evaluation, and are recommended as suitable sites for stream gauge setting, i.e. Samin (Karanganyar), Gonggong (Magetan), Ngisip and Kedung Cilik (Tuban).