Claim Missing Document
Check
Articles

Found 26 Documents
Search

A COMPUTATION PERSPECTIVE FOR THE EIGENVALUES OF CIRCULANT MATRICES INVOLVING GEOMETRIC PROGRESSION SISWANDI SISWANDI; SUGI GURITMAN; NUR ALIATININGTYAS; TEDUH WULANDARI
Jurnal Matematika UNAND Vol 12, No 1 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.1.65-77.2023

Abstract

In this article, the eigenvalues and inverse of circulant matrices with entries in the first row having the form of a geometric sequence are formulated explicitly in a simple form in one theorem. The method for deriving the formulation of the determinant and inverse is simply using elementary row or column operations. For the eigenvalues, the known formulation of the previous results is simplified by considering the specialty of the sequence and using cyclic group properties of unit circles in the complex plane. Then, the algorithm of eigenvalues formulation is constructed, and it shows as a better computation method.
Algoritme Sweep dan Particle Swarm Optimization dalam Optimisasi Rute Kendaraan dengan Kapasitas Bib Paruhum Silalahi; Khoerul Fatihin; Prapto Tri Supriyo; Sugi Guritman
Jurnal Matematika Integratif Vol 16, No 1: April 2020
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1267.18 KB) | DOI: 10.24198/jmi.v16.n1.27474.29-40

Abstract

Masalah rute kendaraan dengan kapasitas (capacitated vehicle routing problem) adalah variasi dari masalah rute kendaraan (vehicle routing problem).  Pada masalah rute kendaraan dengan kapasitas, kendaraan yang digunakan untuk distribusi produk memiliki batas daya angkut. Menentukan solusi optimal dari masalah rute kendaraan dan perluasannya adalah NP-Hard. Oleh karena itu untuk menyelesaikan masalah rute kendaraan dengan kapasitas ini banyak dikembangkan algoritme heuristik. Dalam paper ini, untuk mencari solusi masalah rute kendaraan dengan kapasitas, digunakan gabungan dua algoritme heuristik. Penyelesaian masalah dimulai dengan pembentukan kelompok (clustering) menggunakan algoritme sweep, kemudian setiap kelompok hasil algoritme sweep dioptimalkan menggunakan algoritme particle swarm optimization. 
A FAST COMPUTATION FOR EIGENVALUES OF CIRCULANT MATRICES WITH ARITHMETIC SEQUENCE Sugi Guritman; Jaharuddin; Teduh Wulandari Mas'oed; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.1.69-80

Abstract

In this article, we derive simple formulations of the eigenvalues, determinants, and also the inverse of circulant matrices whose entries in the first row form an arithmetic sequence. The formulation of the determinant and inverse is based on elementary row and column operations transforming the matrix to an equivalent diagonal matrix so that the formulation is obtained easily. Meanwhile, for the eigenvalues formulation, we simplify the known result of formulation for the general circulant matrices by exploiting the properties of the cyclic group induced by the set of all roots of as the set of points in the unit circle in the complex plane, and also by considering the specific property of arithmetic sequence. Then, we construct an algorithm for the eigenvalues formulation. This algorithm shows a better computation compared to the previously known result for the general case of circulant matrices.
PENGEMBANGAN SISTEM E-VOTING DENGAN PROTOKOL TWO CENTRAL FACILITIES MENGGUNAKAN FINGERPRINT SEBAGAI OTENTIKASI VOTER Muhammad Ilyas Sikki; Sugi Guritman; Hendra Rahmawan
Jurnal Sistem Informasi Vol. 9 No. 2 (2013): Jurnal Sistem Informasi (Journal of Information System)
Publisher : Faculty of Computer Science Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.947 KB) | DOI: 10.21609/jsi.v9i2.359

Abstract

The e-voting system which developed using two central facilities protokol consist of three component that is voting machine as client for interaction with voter, central legitimization agency (CLA) as server voter authentication, and central tabulating facility (CTF) as server for result recapitulation voter vote count. Research in this paper just focused to voter authentication process on voting machine toward database of voter that stored in CLA with using fingerprint biometric technology. Fingerprint biometric technology used for voter registration process, voter verification process, and voter authentication process who will doing election. Registration process for acquiring voter fingerprint image database, verification process to be sure voter database can be verificated or not, and authentication process for voter authorization who can be permitted or not by system give of vote in election.
DETERMINAN, INVERS, DAN NILAI EIGEN MATRIKS SKEW-CIRCULANT DENGAN ENTRI BARISAN GEOMETRI Mirza Farhan Azhari; Teduh Wulandari Mas'oed; Sugi Guritman; Jaharuddin; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.2.129-140

Abstract

Matriks skew-circulant adalah matriks segi yang entri terakhir setiap baris berpindah ke posisi utama dan berganti tanda disertai pergeseran semua entri lainnya ke posisi berikutnya. Dalam artikel ini, entri dari matriks circulant berupa entri barisan bilangan geometri. Tujuannya adalah merumuskan suatu formulasi sederhana dari determinan, invers, dan nilai eigen dari suatu matriks skew circulant. Formulasi determinan ditentukan dengan menerapkan serangkaian operasi baris dasar dan kolom dasar sampai diperoleh matriks diagonal. Langkah untuk mencari invers dilakukan dengan mengadaptasi metode dalam mencari determinan dan ekuivalensi baris dan kolom pada matriks. Dalam mencari nilai eigen digunakan konsep akar kesatuan (roots of unity) dan subgrup siklik.
METODE KONJUGAT GRADIEN HIBRID BARU: METODE HS-CD UNTUK MENYELESAIKAN MASALAH OPTIMASI TAK BERKENDALA Saputra, T Murdani; Silalahi, Bib Paruhum; Guritman, Sugi
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 8 No 1 (2020): Volume 8 Nomor 1
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/msa.v8i1.12294

Abstract

Metode konjugat gradien adalah salah satu metode yang efektif dalam menyelesaikan permasalahan optimasi tak-berkendala dan metode ini juga termasuk salah satu metode iteratif. Pada tulisan ini, peneliti mengusulkan metode konjugat gradien hibrid baru yaitu metode new hybrid 4 yang merupakan gabungan antara metode Hestenes dan Stiefel – Conjugate Descent, dimana metode tersebut diusulkan berdasarkan ide dari metode yang telah diusulkan sebelumnya yaitu metode Polak, Ribiѐre dan Polyak - Fletcher dan Reeves atau metode NH1, metode Hestenes dan Stiefel – Dai dan Yuan atau metode NH2 dan metode Liu dan Storey – Conjugate Descent (NH3). Peneliti mengusulkan metode tersebut dengan menggabungkan antara metode HS dan CD, dimana metode tersebut memiliki kekurangan masing-masing. Dalam penelitian ini, peneliti membandingkan hasil numerik antara metode baru yaitu Metode HS-CD (NH4) dengan metode-metode sebelumnya serta membuktikan bahwa memenuhi sifat konvergen global dan memenuhi kondisi descent setiap iterasinya. Hasil numerik menunjukkan bahwa metode baru adalah sangat efisien dalam menyelesaikan fungsi nonlinear tak-berkendala. Metode tersebut juga terbukti memenuhi sifat konvergen global menggunakan kondisi Wolfe serta memenuhi kondisi descent di setiap iterasinya.
The Solution of Generalization of the First and Second Kind of Abel’s Integral Equation Muhammad Taufik Abdillah; Berlian Setiawaty; Sugi Guritman
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 7, No 3 (2023): July
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v7i3.14193

Abstract

Integral equations are equations in which the unknown function is found to be inside the integral sign. N. H. Abel used the integral equation to analyze the relationship between kinetic energy and potential energy in a falling object, expressed by two integral equations. This integral equation is called Abel's integral equation. Furthermore, these equations are developed to produce generalizations and further generalizations for each equation. This study aims to explain generalizations of the first and second kind of Abel’s integral equations, and to find solution for each equation. The method used to determine the solution of the equation is an analytical method, which includes Laplace transform, fractional calculus, and manipulation of equation. When the analytical approach cannot solve the equation, the solution will be determined by a numerical method, namely successive approximations. The results showed that the generalization of the first kind of Abel’s integral equation solution can be determined using the Laplace transform method, fractional calculus, and manipulation of equation. On the other hand, the generalization of the second kind of Abel’s integral equation solution is obtained from the Laplace transform method. Further generalization of the first kind of Abel’s integral equation solution can be obtained using manipulation of equation method. Further generalization of the second kind of Abel’s integral equation solution cannot be determined by analytical method, so a numerical method (successive approximations) is used. 
SECURING INFORMATION CONFIDENTIALITY: A MATHEMATICAL APPROACH TO DETECTING CHEATING IN ASMUTH-BLOOM SECRET SHARING Darmawan, Azhar Janjang; Guritman, Sugi; Jaharuddin, Jaharuddin
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp1989-2002

Abstract

The Secret Sharing Scheme (SSS) based on the Chinese Remainder Theorem (CRT) is a crucial method for safeguarding confidential information. However, this scheme is vulnerable to collaborative cheating involving multiple participants. This study aims to modify the Asmuth-Bloom scheme by introducing two detection mechanisms: Threshold Range Detection and Detection Parameter Verification, to identify and prevent collaborative fraudulent activities. The research design is based on mathematical algorithms and tests the effectiveness of detection against predetermined cheating scenarios using structured parameters. The results indicate that the proposed modifications can accurately detect the manipulation of secret fragments, even in cases involving participant collusion. This robustness is achieved through the mathematical structure of the CRT, which enables the detection of inconsistencies during the secret reconstruction process. In addition to maintaining the efficiency of the original Asmuth-Bloom scheme, these modifications enhance the reliability of the scheme in protecting sensitive data. The study concludes that the implementation of dual detection mechanisms significantly strengthens the security of the SSS, particularly in applications prone to dishonest participant collaboration. Future research is recommended to explore computational efficiency and the implementation of this scheme in real-world environments, such as financial systems and blockchain technology.
DESAIN E-VOTING PILKADA KOTA BOGOR MENGGUNAKAN PROTOKOL TWO CENTRAL FACILITIES YANG DIMODIFIKASI Kusumah, Fitrah Satrya Fajar; Guritman, Sugi; Giri, Endang Purnama
Krea-TIF: Jurnal Teknik Informatika Vol 3 No 2 (2015)
Publisher : Fakultas Teknik dan Sains, Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (271.538 KB) | DOI: 10.32832/kreatif.v3i2.409

Abstract

One of Indonesian election isthe local elections for regional head thatare still using conventional election type.The conventional election type stillspend a lot of time and prone of mistakesmade by humans, including fraudscommitted by certain parties. Thisresearch is based on two centralfacilities protocol in Schneier book(1996) and a continuation of previousresearch by Sireesha and Chakchai(2005) which has developed a secureelection with two central facilitiesprotocol that implement the developmentof Central Legitimization Agency (CLA)and the Central Tabulating Facilities(CTF) to create a secure virtualelections and Wardhani (2009) whichimplement the protocol Two centralfacilities at IPB online voting. Thisresearch collaboration with the KPUBogor and Bogor Information andCommunications, for the purposes ofanalyzing and studying the variouselections policy of regional heads ofBogor. Through this study found adesign system using a protocol e-votingTwo central facilities modified.However, this design is still requirefurther research to be applicable forBogor Regional Head election.
SOME CONSTRUCTION OF 8N-DIMENSIONAL PERFECT MAGIC CUBE WITH ARITHMETIC SEQUENCE Mu'min, Ulil Albab; Silalahi, Bib Paruhum; Guritman, Sugi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 1 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss1pp0565-0578

Abstract

A magic square whose dimensions are expanded is called a magic cube. A magic cube whose properties are expanded is called a perfect magic cube. The perfect magic cube problem is how to arrange numbers in an cube (matrix) such that the sum of rows, columns, pillars, diagonals (planes and spaces) produces a magic constant of the cube. In this paper, it will be studied how to construct a perfect magic cube of order for whose entries contain an arithmetic sequence with the difference which is set to find specific patterns, and the algorithm for constructing a perfect magic cube is then implemented into programming language to solve large orders.