Claim Missing Document
Check
Articles

Found 16 Documents
Search

The Utilization Of Cocopeat As Environmentally Friendly Composite Soeparno Djiwo; E.Y. Setyawan; D.H Praswanto; T.N. Prihatmi; D. Hermawan
JOURNAL OF SCIENCE AND APPLIED ENGINEERING Vol 3, No 2 (2020): JSAE
Publisher : Widyagama University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31328/jsae.v3i2.2156

Abstract

The purpose of this study was to find environmentally friendly-based composite materials by utilizing natural materials that have been underutilized. The environmentally friendly composite is biodegradable which means that if it is not used it can decompose and will not affect or damage the environment. Not all natural ingredients are environmentally friendly; this depends on the application of the material. Composites made from cocopeat utilization can be applied to broad technical requirements. The maximum composite tensile strength test results were 13,473 MPa obtained in composites with 60% matrix with 40% coconut powder, shape and size using ASTM D638-3 and average impact strength 0,00994 J/mm2 obtained from composite 60% matrix with coconut powder 40 % the shape and size using ASTM D790-3, the process of using hand lay up. Adding a polyester matrix to the composite can increase the mechanical strength of the composite. On the other hand, excessive coconut powder in the mass fraction composite will reduce its mechanical strength. The observation of SEM photos in coconut powder shows the pores that can be used further to tie more matrices and able to increase the mechanical strength of the coconut powder composite.
UTILIZATION OF CORK COCOPEAT AS A COMPOSITE SILENCER Eko Yohanes Setyawan; Totok Sugiarto; Soeparno Djiwo
JOURNAL OF SCIENCE AND APPLIED ENGINEERING Vol 1, No 1 (2018): JSAE
Publisher : Widyagama University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.111 KB) | DOI: 10.31328/jsae.v1i1.555

Abstract

Noise is unwanted sound of activity in a particular time and levels that can cause health problems and environmental comfort. Sound or sound is heard as the stimulation on the auditory nerve cells in the ear by a wave of longitudional caused the vibration of the sound or sound source and the waves propagate through the medium of air or any other conductor. Threshold noise received by normal human beings that is 85 dB, when the normal threshold above can lead to damage to the auditory system when not using protective tools in conducting activities. The noise can be avoided by way of designing construction work. In addition noise can be minimised with soundproofing materials. During this suppressor used i.e. from rubber, plastic and metal, but the materials used nowadays are not yet are biodegradable. Therefore, to minimize noise with materials that are biodegradable with composite materials. One effort in selecting materials that are biodegradable with coconut plant utilization have been known by the wider community wastes a lot of cocopeat i.e. we encounter in a craftsmen coir because its existence is underutilized by craftsmen. Natural fibers are biodegradable they have opportunities to be developed further into a composite reinforcement materials that have high performance as an alternative replacement of artificial fiber materials based compounds, hydrocarbons or metal.Methods used i.e. experimental methods, with chemical treatment of cocopeat aims to separate dirt and the lignin contained in the cocopeat so cocopeat can bind matrix that would have a high performance in the muffle the sound so that it can reduce noise. After treatment with alkali, creating a noise test specimens in accordance with the design of the mold. Then the noise testing was performed using a sound pressure level to know the ability of mute and SEM photographs to find causal in a composite able to absorb sound.The results showed, the percentage composition of the powder of coconut fibres (cocopeat) have an influence in absorbing sound. In this study the composition of the powder of coconut fibres (cocopeat) 60% has a high sound absorbency. Desible votes after going through the composite powder coconut fibres 60% has a value of 102.73 db at a distance of 50 cm, 100 db at a distance of 91.57 cm and 80.23 db at a distance of 150 cm. And sound absorbency coefficient on the composition of the powder of coconut fibres 60% has a value of 0.144 on a distance of 50 cm, 100 cm at a distance of 0.237 and 0.331 approximately 150 cm. Whereas in terms of surface morphology of SEM photo of that on the composition of the powder 60% coconut fibers have more porosity percentage which has absorption ability voice more effectively so that the sound after passing the composition of composite lower. Keywords: noise, Biodegradable Composite, cocopeat, SEM.
PEMANFAATAN KOMPOSIT HYBRID SEBAGAI PRODUK PANEL PINTU RUMAH SERAT BULU AYAM (CHICKEN FEATHER) DAN SERAT IJUK (ARENGA PINATA) TERHADAP SIFAT MEKANIK DAN SIFAT THERMAL KOMPOSIT HYBRID MATRIK POLYESTER Aladin Eko Purkuncoro; Soeparno Djiwo; Teguh Rahardjo
Industri Inovatif : Jurnal Teknik Industri Vol 4 No 2 (2014): inovatif Vol. 4 No. 2
Publisher : Prodi Teknik Industri S1 Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Masalah dari pada serat ijuk yang diambil dari alam adalah kondisinya bercampur kotoran dan debu, sehingga belum dapat dijadikan serat sebagai bagian dalam pembuatan komposit serta pemanfatan limbah serat bulu ayam yang tahan panas, sehingga Tujan peneliti ini adalah mencari karakteristik mekanis dan ketahanan panas dari kombinasi material komposit hybrid dengan serat ijuk yang diberikan larutan NaOH dengan variasi 0%, 2%, 5%, dan 10% dan bulu ayam digunakan sebagai bahan penguat (filler) pada matrik polyester yang optimal sehingga dihasilkan nilai pasar yang mampu menyaingi produk-produk panel pintu impor. Hasilnya larutan NaOH sebesar 2% memberikan pengaruh kenaikan uji tarik sebesar 138,71 Mpa dan setelah diproses menjadi komposit hybrid dengan serat limbah bulu ayam memberikan pengaruh ke sifat mekanik impak dan tarik serta dapat menyerap panas. Hasil pengujian impak 0,161 J/mm2 dan energi impak 19,53 Joule. Hasil pengujian tarik 72,304 kg/mm2 , dan bisa menyerap panas sehingga siap untuk dijadikan bahan hybrid komposit untuk produk –produk panel pintu.
PEMANFAATAN MESIN BENDING UNTUK MENINGKATKAN KUALITAS PRODUKSI DI BENGKEL LAS SURYA MANDIRI KECAMATAN PURWOSARI KABUPATEN PASURUAN Djoko Hari Praswanto; Eko Yohanes Setyawan; Soeparno Djiwo; Izza Nur Affida
JASTEN (Jurnal Aplikasi Sains Teknologi Nasional) Vol. 3 No. 2 (2022)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (464.597 KB) | DOI: 10.36040/jasten.v3i2.6034

Abstract

Dalam perkembangan desain pagar atau kanopi pada rumah, sekarang ini banyak desain yang menggunakan lengkungan. Sebelumnya pagar minimalis sangat dikenal dengan model yang minim lengkungan. Dengan perkembangannya untuk menampilkan estetika pagar mengikuti desain rumah, dimana ada beberapa lengkungan pada pagar atau kanopi. Untuk membuat lengkungan pada pagar besi hollow tidak mudah. Jika membuat lengkungan tersebut menggunakan cara manual, lengkungan pada besi hollow tidak simetris dan besi hollow dapat penyok didaerah lengkungan sehingga tampilan pagar menjadi jelek. Dengan kegiatan pengabdian masyarakat ini, solusi yang ditawarkan untuk membuat lengkungan pada besi hollow menggunakan mesin bending skala kecil yang berfungsi membuat lengkungan pada besi hollow kotak ataupun bulat. Mesin bending ini dilengkapi dengan roll yang dapat dirubah menyesuaikan ukuran pipa yang akan dibending. Luaran dalam kegiatan pengabdian masyarakat ini berupa teknologi tepat guna mesin bending, dan publikasi jurnal nasional terkareditasi sinta. Dari hasil kegiatan ini mitra dapat menghemat kurang lebih 15% dari harga pembuatan sebelumnya
Analysis of Hydrogen Gas Production Results in Water Electrolysis Process on Genset Characteristics Djoko Hari Praswanto; Soeparno Djiwo; Bima R. P. D Palevi
JOURNAL OF SCIENCE AND APPLIED ENGINEERING Vol 6, No 1 (2023): JSAE
Publisher : Widyagama University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31328/jsae.v6i1.4236

Abstract

Hydrogen gas is a type of alternative fuel for transportation that can serve a number of other potential needs. Water electrolysis is one way to get hydrogen gas. This study aims to determine the results of water electrolysis with three catalysts and mixed metal electrodes which are then applied to generator motor engines. The research method used was an experimental method with variations in electrolysis using KOH and NaOH base catalysts, H2SO4 acid catalysts, and stainless steel 316 electrodes. The best results for H2 gas production in this study were obtained with a 2M H2SO4 catalyst with a gas yield of 244.9mL H2 gas, while The lowest yield in this study was the 1M concentration of 1M NaOH catalyst of 12.5mL. The best results for H2 gas production were varied with pertalite fuel and then tested with a generator engine. Testing the generator motor engine is measured arm length and mass with a machine dynamometer. After testing, the data is obtained which is then analyzed to obtain the value of torque (Nm) and electric motor power (kW), and driving motor power (HP). The maximum energy produced pertalite + H2 gas has increased by 2.27kW on the electric motor and power of 4.13HP on the driving motor, while for pertalite fuel alone the power generated is 1.44kW on the electric motor and power of 2.62HP on the driving motor.[1]        S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, “Current status, research trends, and challenges in water electrolysis science and technology,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26036–26058, 2020, doi: 10.1016/j.ijhydene.2020.03.109.[2]        Y. Song, X. Zhang, K. Xie, G. Wang, and X. Bao, “High-Temperature CO2 Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects,” Adv. Mater., vol. 31, no. 50, pp. 1–18, 2019, doi: 10.1002/adma.201902033.[3]        A. Nechache and S. Hody, “Alternative and innovative solid oxide electrolysis cell materials: A short review,” Renew. Sustain. Energy Rev., vol. 149, 2021, doi: 10.1016/j.rser.2021.111322.[4]        O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, “Future cost and performance of water electrolysis: An expert elicitation study,” Int. J. Hydrogen Energy, vol. 42, no. 52, pp. 30470–30492, 2017, doi: 10.1016/j.ijhydene.2017.10.045.[5]        S. Wang, A. Lu, and C. J. Zhong, “Hydrogen production from water electrolysis: role of catalysts,” Nano Converg., vol. 8, no. 1, 2021, doi: 10.1186/s40580-021-00254-x.[6]        N. A. Burton, R. V. Padilla, A. Rose, and H. Habibullah, “Increasing the efficiency of hydrogen production from solar powered water electrolysis,” Renew. Sustain. Energy Rev., vol. 135, no. July 2020, p. 110255, 2021, doi: 10.1016/j.rser.2020.110255.[7]        J. Brauns and T. Turek, “Alkaline water electrolysis powered by renewable energy: A review,” Processes, vol. 8, no. 2, 2020, doi: 10.3390/pr8020248.[8]        S. Anwar, F. Khan, Y. Zhang, and A. Djire, “Recent development in electrocatalysts for hydrogen production through water electrolysis,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 32284–32317, 2021, doi: 10.1016/j.ijhydene.2021.06.191.[9]        W. Tong et al., “Electrolysis of low-grade and saline surface water,” Nat. Energy, vol. 5, no. 5, pp. 367–377, 2020, doi: 10.1038/s41560-020-0550-8.[10]      T. Nguyen, Z. Abdin, T. Holm, and W. Mérida, “Grid-connected hydrogen production via large-scale water electrolysis,” Energy Convers. Manag., vol. 200, no. September, p. 112108, 2019, doi: 10.1016/j.enconman.2019.112108.[11]      A. Buttler and H. Spliethoff, “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review,” Renew. Sustain. Energy Rev., vol. 82, no. February, pp. 2440–2454, 2018, doi: 10.1016/j.rser.2017.09.003.[12]      I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, “Comparative study of anion exchange membranes for low-cost water electrolysis,” Int. J. Hydrogen Energy, vol. 45, no. 49, pp. 26070–26079, 2020, doi: 10.1016/j.ijhydene.2019.11.011.[13]      L. Peng and Z. Wei, “Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell,” Engineering, vol. 6, no. 6, pp. 653–679, 2020, doi: 10.1016/j.eng.2019.07.028.[14]      S. Klemenz, A. Stegmüller, S. Yoon, C. Felser, H. Tüysüz, and A. Weidenkaff, “Holistic View on Materials Development: Water Electrolysis as a Case Study,” Angew. Chemie - Int. Ed., vol. 60, no. 37, pp. 20094–20100, 2021, doi: 10.1002/anie.202105324.[15]      H. K. Ju, S. Badwal, and S. Giddey, “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production,” Appl. Energy, vol. 231, no. May, pp. 502–533, 2018, doi: 10.1016/j.apenergy.2018.09.125.[16]      F. ezzahra Chakik, M. Kaddami, and M. Mikou, “Effect of operating parameters on hydrogen production by electrolysis of water,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25550–25557, 2017, doi: 10.1016/j.ijhydene.2017.07.015.[17]      F. Gutiérrez-Martín, L. Amodio, and M. Pagano, “Hydrogen production by water electrolysis and off-grid solar PV,” Int. J. Hydrogen Energy, vol. 46, no. 57, pp. 29038–29048, 2021, doi: 10.1016/j.ijhydene.2020.09.098.
Penerapan Mesin Pengaduk Briket Arang Tempurung Kelapa Sebagai Bahan Bakar Eko Yohanes Setyawan; Awan Uji Krismanto; Soeparno Djiwo; Abraham Lomi; I Made Wartana; Choirul Saleh; Ida Soewarni
JASTEN (Jurnal Aplikasi Sains Teknologi Nasional) Vol. 4 No. 2 (2023)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jasten.v4i2.8163

Abstract

Briket arang kelapa Indonesia memiliki potensi ekspor yang besar. Salah satu faktornya adalah kualitas briket kelapa Indonesia yang dinilai terbaik oleh pasar Internasional. Briket arang batok kelapa merupakan bahan bakar alternatif yang kerap digunakan untuk memasak terutama untuk memanggang bahan makanan seperti di Eropa, di negara Timur Tengah digunakan untuk keperluan rokok pipa shisha, sedangkan di Asia seperti di Korea Selatan dan Jepang briket arang kelapa digunakan untuk keperluan memasak di restoran, dikarenakan produk briket arang batok kelapa asal Indonesia dapat menghasilkan panas yang lebih besar dibandingkan dengan briket batu bara ataupun arang dari bahan tanaman bakau. Selain itu, briket dari arang batok kelapa juga lebih aman, ramah lingkungan, karena tidak merusak tanaman seperti tanaman bakau serta tidak menimbulkan asap terkait dengan isu pemanasan global. Dari hasil survei yang sudah dilakukan mitra menyampaikan bahwa mesin yang selama ini pakai tidak bekerja secara maksimal sehingga disaat briket yang sudah dicetak masuk kedalam oven setelah kering akan banyak yang pecah, sehingga tidak laku untuk dijual. sehingga tim pengabdian melihat beberapa permasalahan diantaranya perlunya penambahan mesin blending agar menjadi adonan yang bagus.