Claim Missing Document
Check
Articles

Found 22 Documents
Search

PENINGKATAN AKURASI PREDIKSI PEMILIHAN PROGRAM STUDI CALON MAHASISWA BARU MELALUI OPTIMASI ALGORITMA DECISION TREE DENGAN TEKNIK PRUNING DAN ENSEMBLE Mulyo, Harminto; Maori, Nadia Annisa
Jurnal Disprotek Vol 15, No 1 (2024)
Publisher : Universitas Islam Nahdlatul Ulama Jepara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34001/jdpt.v15i1.5585

Abstract

ENHACING PREDICTION ACCURACY OF NEW STUDENT PROGRAM SELECTION THROUGH DECISION TREE ALGORITHM OPTIMIZATION WITH PRUNING TECHNIQUE AND ENSEMBLEIn the current era of reform and globalization, the complexity of choosing the right study program is increasing with the many choices available. One of the challenges faced by the Nahdlatul Ulama Islamic University (UNISNU) Jepara is the increase in students with non-active status which can have an impact on the reputation of the university. One of the factors that can influence is the inaccuracy of students in choosing a study program, so that they are reluctant to continue because they are not enthusiastic about continuing their studies. The solution provided is to predict the selection of the right study program for prospective new students by utilizing the Decision Tree algorithm which is optimized with pruning and ensemble techniques with Random Forest which can help overcome overfitting in the decision tree. The data used is UNISNU student data from 2013 to 2023 with a total of 15,289 records and 52 attributes. The results showed that the Decision Tree and Random Forest models provided the highest accuracy, namely 0.88 with a max_depth value of 20 and succeeded in overcoming the problem of overfitting the decision tree. This model can then be used as a recommendation in predicting the selection of study programs for prospective new students at UNISNU Jepara.Dalam era reformasi dan globalisasi saat ini, kompleksitas dalam memilih program studi yang sesuai semakin meningkat dengan banyaknya pilihan yang tersedia. Salah satu tantangan yang dihadapi oleh Universitas Islam Nahdlatul Ulama (UNISNU) Jepara adalah meningkatnya mahasiswa dengan status non-aktif yang dapat berdampak pada reputasi universitas. Salah satu faktor yang dapat mempengaruhi adalah ketidaktepatan mahasiswa dalam memilih program studi, sehingga enggan untuk meneruskan karena tidak bersemangat dalam melanjutkan perkuliahan. Solusi yang diberikan adalah dengan melakukan prediksi pemilihan program studi bagi yang tepat bagi calon mahasiswa baru dengan memanfaatkan algoritma Decision Tree yang dioptimalkan dengan teknik pruning dan ensemble dengan Random Forest yang dapat membantu mengatasi overfitting pada decision tree. Data yang digunakan adalah data mahasiswa UNISNU dari tahun 2013 sampai dengan 2023 dengan jumlah 15.289 record dan 52 atribut. Hasil penelitian menunjukkan model Decision Tree dan Random Forest memberikan akurasi tertinggi, yaitu 0.88 dengan nilai max_depth sebesar 20 dan berhasil mengatasi masalah overfitting pada decision tree. Model ini selanjutnya dapat menjadi rekomendasi dalam prediksi pemilihan program studi bagi calon mahasiswa baru di UNISNU Jepara.
INTEGRATING LARAVEL 8 AND NODE.JS FOR DEVELOPING WHATSAPP COMMUNICATION MEDIA FOR NEW STUDENT ENROLLMENT IN THE FACULTY OF SCIENCE AND TECHNOLOGY Harminto Mulyo; Nadia Annisa Maori
Science and Technology (SciTech) The 3rd National Seminar and Proceedings Scitech 2024
Publisher : Science and Technology (SciTech)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The promotional process is a crucial initial stage for higher education institutions. New student admissions are a critical aspect that serves as a benchmark for enhancing the institution's appeal and reputation. To improve efficiency and effectiveness, this study proposes a WhatsApp-based communication system integrated with Laravel 8 and Node.js, ensuring faster, consistent, and easily accessible responses. Using the Define-Design-Develop-Disseminate (4D) Model, this study integrates Laravel 8 and Node.js to develop a WhatsApp communication system for new student admissions. This approach includes identifying needs, designing the system, developing a prototype, conducting large-scale testing, and dissemination. The proposed system architecture consists of two main components: a backend developed with Laravel 8 and a WhatsApp communication module managed using Node.js and Baileys. Laravel 8 handles the WhatsApp bot, including keyword processing, message sending, and contact management. Meanwhile, Node.js with Baileys directly interacts with the WhatsApp API, facilitating real-time message delivery and reception. The integration of Laravel 8 and Node.js in the WhatsApp communication application at the Faculty of Science and Technology, UNISNU Jepara, has proven to be efficient and responsive. This system enhances message management, bot functionality, and contact handling, significantly improving response speed and efficiency in addressing prospective student inquiries.