Articles
Prediksi Tingkat Kunjungan Pasien dengan Menggunakan Metode Monte Carlo
Aldo Eko Syaputra;
Yofhanda Septi Eirlangga
Jurnal Informasi dan Teknologi 2022, Vol. 4, No. 2
Publisher : SEULANGA SYSTEM PUBLISHER
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37034/jidt.v4i2.202
The increase in the number of patient visits that often occur at community health centers / puskesmas has caused some activities in health services to be slightly hampered, disturbed and less than optimal, resulting in some patients not getting comprehensive services and some even waiting too long in queues. The purpose of this study was to provide information to the health center about the prediction of an increase in the number of patient visits that might occur in the future. The data used in this study were patient visit data at the IX Koto Sungai Lasi health center from 2019, 2020, and 2021 to extract the data that was obtained. The method used in this study was the Monte Carlo method. The results of the study can predict patient visit rates in the following years with an average accuracy rate of 91%, in 2020, and 85% in 2021, the results of these predictions can be a reference for the Puskesmas to take action and policies to improve quality of service at the Puskesmas.
Klasifikasi Penjurusan pada Sekolah Menengah Atas (SMA) dengan Metode Algoritma C4.5
Yofhanda Septi Eirlangga;
Aldo Eko Syaputra
Jurnal Informasi dan Teknologi 2022, Vol. 4, No. 3
Publisher : SEULANGA SYSTEM PUBLISHER
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37034/jidt.v4i3.235
The Indonesian Minister of Education has stipulated 12 years of compulsory education, but only at high school (SMA) students can only determine the major they are interested in. In every new academic year the PPDB (New Student Admissions) committee has difficulty in determining majors because the determination of majors is still done manually so that there is a mismatch with the interests and talents of students caused by human error. So it is necessary to conduct a study with the aim of assisting the PPDB committee in determining the majors accurately and effectively so that the interests and talents of students can be channeled appropriately. Therefore, the C4.5 algorithm method is used which is one of the data mining algorithms that produces a decision tree that is suitable for classifying large amounts of data. The data used in this study were taken from the grade IX student report cards in 2022 as many as 44 report cards which have 11 subject value variables, namely Science, Social Sciences, Indonesian Language, PKN, Islamic Religious Education, MTK, English, BAM Arts and Culture, ICT and Physical Education. The results of this study obtained a decision tree (decision tree) with 17 rules (knowledge) that has been matched with real data with a very high level of accuracy. So that this research can help and become a benchmark for the PPDB committee in determining the majors of new students every time a new teaching begins at SMA Pertiwi 2 Padang
Model Simulasi untuk Memperkirakan Tingkat Penjualan Garam Menggunakan Metode Monte Carlo
Muhammad Thoriq;
Aldo Eko Syaputra;
Yofhanda Septi Eirlangga
Jurnal Informasi dan Teknologi 2022, Vol. 4, No. 4
Publisher : SEULANGA SYSTEM PUBLISHER
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37034/jidt.v4i4.244
The increasing need for salt in the West Sumatra area is inversely proportional to the raw material for making salt. So the stock of salt for consumption becomes less. This causes the purchasing power to be cut off for the needs of regional consumers. Based on these problems, a research was conducted by conducting simulations to predict the amount of salt sales in controlling stock. This study aims to predict sales in maintaining service to consumer demand. The method that can be used in making predictions is the Monte Carlo Method by processing Salt sales data in 2019, 2020, and 2021 at PT. Prosperous Grace. The results of the study are able to predict sales of salt in the form of kilograms (kg) in the future. The average accuracy rate in 2020 is 88% and in 2021 is 91%. So that this research can be a reference in decision making by PT. Kurnia Sejahtera to improve services.
SISTEM PAKAR DALAM MENENTUKAN KENAIKAN PANGKAT ANGGOTA POLRI MENGGUNAKAN METODE FORWARD CHAINING
Devi Gusmita;
Yofhanda Septi Eirlangga;
Sopi Sapriadi
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 6, No 1 (2023): February 2023
Publisher : Smart Education
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.54314/jssr.v6i1.1194
Abstract: This research has been done research on the promotion of the rank of POLRI Members in this process is essentially the examination of the requirements for the proposed promotion of members of POLRI. this research is done design and manufacture of expert systems based rules (Rule Based) to help calculation requirements in the process determination of promotion in the process of appointing the promotion of members of POLRI. The inference method used is forward chaining where the tracking starts from the destination ie the type of the intended rank, then sought the rules of conditions that have tujua it for the conclusion. Tests conducted on this expert system include testing of police data that has prepared the requirements for the promotion process. The results of this study are expected to provide solutions and ease along with accurate information in the process of determining the promotion of members of POLRIKeywords: Expert system; forward chaining; promotion; rule based. Abstrak: Pada penelitian ini berisi tentang kenaikan pangkat Anggota POLRI yang proses intinya adalah pemeriksaan syarat-syarat untuk usulan kenaikan pangkat anggota POLRI. Dalam penelitian ini dilakukan perancangan dan pembuatan sistem pakar berbasiskan aturan(Rule Based) untuk membantu perhitungan syarat-syarat dalam proses penetuan kenaikan pangkat anggota POLRI. Metode inferensi yang digunakan adalah forward chaining dimana pelacakan dimulai dari tujuan yaitu jenis pangkat yang dituju, selanjutnya dicari aturan syarat-syarat yang memiliki tujuan tersebut untuk kesimpulannya. Pengujian yang dilakukan pada sistem pakar ini meliputi pengujian terhadap data polisi yang telah mempersiapkan syarat-syarat untuk proses kenaikan pangkat.Hasil dari penelitian ini diharapkan mampu memberikan solusi dan kemudahan beserta informasi yang akurat dalam proses penentuan kenaikan pangkat anggota POLRI.Kata kunci: Sistem pakar; Forward Chaining; kenaikan pangkat; Rule Based
Prediksi Peningkatan Kunjungan Pasien Dimasa Mendatang Mengunakan Jaringan Saraf Tiruan Backpropagation
Muhammad Thoriq;
Aldo Eko Syaputra;
Yofhanda Septi Eirlangga
JURNAL FASILKOM Vol 14 No 1 (2024): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37859/jf.v14i1.6068
Sebagai lembaga kesehatan pertama pada suatu wilayah dalam memberikan pelayanan kesehatan jumlah kunjungan pasien tidak bisa kita prediksi kedatangannya dan pada waktu-waktu tertentu jumlah pasien membludak sehingga menjadi tidak sesuai dengan tenaga kesehatan (nakes) yang sedang bertugas. Karena banyak pasien yang datang dan tidak sesuai dengan nakes yang sedang bekerja menyebabkan banyaknya pasien yang mengantri bahkan sampai tidak bisa dilayani dan dianjurkan untuk pemeriksaan besok harinya. Inilah yang menyebabkan pelayanan kesehatan menjadi kurang optimal serta beberapa aspek dari puskesmas tidak berjalan dengan sempurna. Berdasarkan masalah tersebut diatas, perlu dilakukannya sebuah penelitian yang komprehensif guna memperkirarkan jumlah kedatagan pasien dimasa yang akan datang. metode jaringan saraf tiruan (JST) bakcpropagation akan dipakai dalam membantu penelitian ini. Penggunaan metode ini dengan mempertimbangkan bahwa Jaringan Syaraf Tiruan mempunyai kemampuan belajar dari pola-pola yang di masukan di ajarkan dan melakukan komputasi dengan paralel. Data yang dipakai meneliti adalah data kunjungan-kunjungan pasien pada tahun lampau yang akan dijadikan data training. Tujuan dari penelitian ini mengharapkan JST menggunakan Backpropagation dapat memperkirakan keberhasailan latihan kerja secara akurat. Hasil dari penelitian ini adalah Setelah dilakukan tahapan propagasi balik. Hasil prediksi yang optimal diperoleh sebesar 0.98946, mendekati nilai target (1). Terdapat kemungkinan kesalahan sebesar 0.00011 atau 0.01% yang terjadi.
Perkiraan Kebutuhan Air Bersih Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation
Muhammad Thoriq;
Aldo Eko Syaputra;
Yofhanda Septi Eirlangga
JURNAL FASILKOM Vol 13 No 3 (2023): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37859/jf.v13i3.6142
Untuk memenuhi kebutuhan air bersih pihak PDAM melakukan pengolahan sebanyak mungkin, tanpa mengetahui akan jumlah kebutuhan air bersih untuk bulan atau tahun berikutnya. Akibatnya menimbulkan biaya produksi tinggi seperti pemakaian bahan kimia yang banyak dan beban pemakaian listrik yang berlebihan. Oleh karena itu dibutuhkan suatu perkiraan untuk memenuhi kebutuhan air bersih di PDAM Kota Padang. Maka peneliti melakukan penelitian ini dengan tujuan untuk memberikan informasi yang akurat mengenai prediksi kebutuhan air bersih menggunakan metode jaringan syaraf tiruan. Data yang diolah dalam penelitian ini adalah data 5 tahun terakhir dengan frekuensi dari bulan Januari sampai Desember. Tujuan utama dari penelitian ini adalah mengembangkan model jaringan syaraf tiruan yang dapat memperkirakan kebutuhan air bersih berdasarkan faktor-faktor yang relevan. Faktor-faktor tersebut antara lain jumlah penduduk, curah hujan, penggunaan air domestik, permintaan industri dan faktor-faktor lain yang dapat mempengaruhi permintaan air minum. Hasil penelitian dari data pelatihan dan pengujian menunjukkan bahwa ketiga wilayah tersebut tidak selalu memberikan hasil yang baik. Memang jumlah kebutuhan garam di setiap daerah selalu berbeda-beda.
Peningkatan Pelayanan Laboratorium Dengan Memprediksi Kedatangan Pasien Menggunakan Metode Monte Carlo
Aldo Eko Syaputra;
Yofhanda Septi Eirlangga;
Sopi Sapriadi
JURNAL FASILKOM Vol 13 No 3 (2023): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37859/jf.v13i3.6242
The number of patient visits to the laboratory is unstable sometimes decreasing and increasing, when the increase in the number of visits to the laboratory makes everything disrupted because the number of patients who come is not proportional to the staff who are working / assigned at that time in the laboratory. So that some patients do not even get thorough service and even some patients wait too long in the queue. This causes services in the laboratory to be hampered, disrupted and become less than optimal. So the laboratory must be able to overcome this problem by knowing the number of visits to the laboratory in the future. So the researchers conducted this study with the aim of providing accurate information regarding the prediction of the number of patient arrivals to the laboratory with the application of the Monte Carlo Method. This method is a method that is often used to solve problems that are often related to uncertainty. The data used in this study is the last 3 years of patient arrivals to the laboratory with the frequency of arrivals from January to December. The results of this research are compacted accuracy of 87% in 2020 and 91% in 2021. So that the laboratory can take action on services in the future and make this research as a reference material.
Sosialisasi dan Pelatihan Secure Computer dalam Meningkatan Kesadaran Siswa terhadap Keamanan Data
Sopi Sapriadi;
Aldo Eko Syaputra;
Yofhanda Septi Eirlangga;
Kiki Hariani Manurung;
Nova Hayati
Majalah Ilmiah UPI YPTK Vol. 30 (2023) No. 2
Publisher : Universitas Putra Indonesia YPTK Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35134/jmi.v30i2.149
Meningkatnya jumlah kejahatan cyber yang terjadi dan makin berkembangnya teknik-teknik dan tools serta produk perangkat lunak yang dikembangkan untuk mengotomatisasi tindakan kejahatan cyber (virus, malware, trojan, dll) mengindikasikan bahwa perlu adanya tindakan optimal dari user dalam menjaga keamanan komputer dan informasi dari para pengguna teknologi. Sosialisasi terhadap bahaya kejahatan cyber dan pentingnya menjaga keamanan data dan informasi harus dilakukan terhadap seluruh kalangan pengguna teknologi sedini mungkin. Dalam prakteknya penggunaan teknologi semakin pesat, terutama dikalangan anak muda yang baru duduk dibangku sekolah. Hal ini timbul dikarenakan saat proses belajar mengajar interaksi guru dengan siswa cenderung melibatkan teknologi dalam penyampaian informasi dan berbagi ilmu teknologi diera sekarang. Dari pertimbangan tersebut, maka timbul sebuah gagasan untuk memberikan sosialisasi computer secure user kepada siswa siswi jurusan Multimedia dan Teknik Komputer Jaringan di SMK Negeri 1 Gunung Talang. Tujuan dari program sosialisasi secure computer user ini adalah untuk memberikan para siswa-siswi pengetahuan dan keterampilan yang diperlukan untuk melindungi aset informasinya dengan membenamkan siswa ke lingkungan interaktif dimana mereka akan memperoleh pemahaman mendasar tentang berbagai ancaman keamanan komputer dan jaringan. Hasil sosialisasi ini berupa demonstrasi cara mengamankan komputer dan informasi yang dimiliki oleh siswa yang mampu mencegah penyalahgunaan informasi yang dimiliki oleh siswa dan siswi jurusan Multimedia dan Teknik Komputer Jaringan Pada SMK 1 Gunung Talang.
SISTEM PENUNJANG DALAM PENGAMBILAN KEPUTUSAN PEMBERIAN REWARD DOSEN TERBAIK MENGGUNAKAN METODE TOPSIS
Hayati, Nova;
Syaputra, Aldo Eko;
Eirlangga, Yofhanda Septi
J-Icon : Jurnal Komputer dan Informatika Vol 11 No 2 (2023): Oktober 2023
Publisher : Universitas Nusa Cendana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35508/jicon.v11i2.12390
Lecturers are professional teaching staff who provide all their knowledge and loyalty through teaching students, research and community service. To increase the performance and loyalty of lecturers to tertiary institutions, this is done by giving rewards to the best lecturers. In making the decision to give rewards to lecturers, there are several steps and criteria that must be met, because the large number of lecturers and criteria causes the assessment team to experience difficulties in processing the criteria data and lecturer data who are entitled to the reward, so a method is needed that is implemented into a computerized system that will facilitate the work of the assessment team in data processing and the resulting data to be accurate and reliable. The data applied in this research is data from permanent university lecturers and the conditions set by the university. The purpose of this research is to maximize the performance of the assessment team in processing criteria data and university permanent lecturers to get the best lecturers who are entitled to receive rewards using the TOPSIS method. The decision in determining the alternative to giving rewards to the best lecturers, by selecting 3 lecturers as recipients of the best lecturer rewards as an alternative is the result of this study. From these results, there are influential criteria, namely Research, Teaching, and Attendance.
Prediction of the Number of New Students in the Information Systems Study Program at Adzkia University Using the Monte Carlo Method: Prediksi Jumlah Mahasiswa Baru Program Studi Sistem Informasi Universitas adzkia Menggunakan Metode Monte Carlo
Prima, Wahyu;
Eko Syaputra, Aldo;
Sapriadi, Sopi;
Septi Eirlangga , Yofhanda;
Hariani Manurung, Kiki;
Hayati, Nova
Journal of Vocational Education and Information Technology (JVEIT) Vol. 5 No. 1 (2024): Vol. 5 No. 1 (2024): JVEIT
Publisher : Lembaga Pengembangan dan Inovasi Universitas Dharmas Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.56667/jveit.v5i1.1458
This research aims to predict the number of new students in the Information Systems Study Program at Adzkia University using the Monte Carlo method. The Monte Carlo method was chosen because of its ability to handle variability and uncertainty in historical student enrollment data. The data used in this research is data on students who registered from any pathway during the last 3 years. The simulation process is carried out by creating a probabilistic model from historical data and iterating until a prediction distribution is obtained. The research results show that the Monte Carlo method provides fairly accurate estimates of student predictions for the following year, namely (numbers) which can be used for strategic planning for new student admissions in the future. In conclusion, the use of the Monte Carlo method can be an effective tool in predicting the number of new students and assisting universities in making better decisions regarding student admissions.