Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : MATEMATIKA

MODEL ASIMETRIS GABUNGAN INVENTORY DAN ROUTING UNTUK MINIMISASI HARGA KOMODITI sarwadi, Sarwadi; hariyanto, susilo
MATEMATIKA Vol 7, No 2 (2004): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (56.845 KB)

Abstract

Dalam penelitian ini, akan dirumuskan suatu model matematik yang merupakan gabungan antara masalah inventory dan routing. Model dibangun  dengan memperhatikan sifat asimetris matrik jarak antar kota. Masalah ini diselesaikan dengan menggunakan teori graph. Perumusan masalah dinyatakan ke model Mixed Integer Linier Programming. Model ini disusun untuk kasus minimisasi suatu harga komoditi. Selanjutnya, model yang dibangun dikaji karakteristik-karakteristiknya untuk membuktikan kesahihannya, sehingga diperoleh suatu model MILP yang valid untuk permasalahan inventory dan routing.
SYARAT PERLU DAN CUKUP INTEGRAL HENSTOCK-BOCHNER DAN INTEGRAL HENSTOCK-DUNFORD PADA [a,b] Solikhin, Solikhin; Hariyanto, Susilo; Sumanto, Y.D; Aziz, Abdul
MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (720.064 KB)

Abstract

In this paper we study Henstock-Bochner and Henstock-Dunford integral on [a,b]. We discuss some properties of  the integrable. For every function which Henstock-Bochner integrable then it is Hentsock-Dunford integrable. The contrary is not true. Further more, let for any  and collection  is Henstock-equi-integrable. We will show that function   is Henstock-Bochner  integrable on   if only if  it is Henstock-Dunford integrable on .
METODE PENYELESAIAN MASALAH CAUCHY DEGENERATE NONHOMOGEN MELALUI PENYELESAIAN MASALAH CAUCHY NONDEGENERATE NONHOMOGEN hariyanto, Susilo
MATEMATIKA Vol 11, No 3 (2008): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (81.615 KB)

Abstract

In this article, we investigate how to solve abstract degenerate Cauchy problems nonhomogen via abstract nondegenerate Cauchy problems nonhomogen. The problem are discussed in the Hilbert space H  which can be written as an orthogonal direct sum of Ker M and . Under certain assumptions it is possible to reduce the problems to an equivalent  nondegenerate Cauchy problem in the factor space   H/Ker M  which can be easier to solve. Moreover we defines an operator ZA which maps the solutions of abstract nondegenerate Cauchy problems nonhomogen to abstract degenerate Cauchy problems nonhomogen  
SIFAT-SIFAT GRAF (2n) L., Erly; Hariyanto, Susilo
MATEMATIKA Vol 11, No 3 (2008): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (74.544 KB)

Abstract

A sequence of non negative integers d = (d1, d2, …, dn) is said a sequence of graphic if it is the degree sequence of a simple graph G. In this case, graph G is called realization for d. The set of all realizations of  non isomorfic 2-regular graph with order n (n ≥ 3) is denoted R(2n), whereas a graph with R(2n) as set of  their vertices is denoted (2n) . Two vertices in graph (2n)  are called adjacent if one of these vertices can be derived from the other by switching. In the present paper, we  prove that  for n ≥ 6, (2n) is a connected and bipartite graph.  
RUANG MATRIX LINEAR TRANSLASI INVARIAN PADA RUANG FUNGSI INTEGRAL HENSTOCK-DUNFORD PADA [a,b] Solikhin, Solikhin; Sumanto, YD; Hariyanto, Susilo; Aziz, Abdul
MATEMATIKA Vol 20, No 2 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (369.614 KB)

Abstract

In this paper we study Henstock-Dunford integral on [a,b]. We discuss some properties of the integrable. We will construct norm and matrix on Dunford-Henstock integrable function space, $HD[a,b]$. We obtain that $HD[a,b]$ is linear space. A function $\left\| \,.\, \right\|:HD[a,b]\to R$ defined by $\left\| f \right\|=\underset{\begin{smallmatrix} {{x}^{*}}\in {{X}^{*}} \\ \left\| {{x}^{*}} \right\| \le 1 \end{smallmatrix}}{\mathop{\sup}}\, \\ left( \underset{A\subset[a,b]}{\mathop{\sup}}\,\,\left| \left( H \right) \int \limits_{A}{{{x}^{*}}f} \right| \right)$ for every $f \in HD[a,b]$ is norm on linear space $HD[a,b]$. A function $d:HD[a,b]\times HD[a,b]\to R$ defined by $d\left( f,g \right)=\left\| f-g \right\|$ for every $f,g\in HD[a,b]$ is a matrix on linear space $HD[a,b]$. Further more, linear space $HD[a,b]$ is linear matrix translation invarian space.