Arif Bijaksana Putra Negara
Universitas Tanjungpura

Published : 36 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Aplikasi dan Riset Informatika

Analisis Pengaruh Penerapan Stopword Removal Pada Performa Klasifikasi Sentimen Tweet Bahasa Indonesia Sherren Jessica Angelina; Arif Bijaksana Putra Negara; Hafiz Muhardi
Jurnal Aplikasi dan Riset Informatika Vol 1, No 2 (2023)
Publisher : Jurnal Aplikasi dan Riset Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jari.v2i1.69680

Abstract

Sehubung dengan mudahnya akses digital seperti penggunaan media sosial twitter, maka setiap individu menjadi lebih bisa untuk saling berinteraksi dalam bertukar pendapat, argumen dan pokok pikiran. Sehingga ketersediaan data untuk dikumpulkan dan diolah menjadi suatu informasi seperti sentimen analisis terasa lebih gampang dan cepat untuk didapatkan. Melalui analisis sentimen atau opinion mining, maka sentimen analisis dapat diklasifikasikan menjadi 3 jenis, yaitu sentimen positif, netral dan negatif.  Tujuan penelitian ini adalah untuk menghasilkan model klasifikasi dengan performa terbaik dan optimal dalam melakukan klasifikasi sentimen tweet Bahasa Indonesia dan juga untuk mengetahui pengaruh penerapan Stopword Removal dalam membangun model klasifikasi sentimen analisis. Adapun agoritma yang digunakan pada penelitian ini adalah algoritma Naïve Bayes dan Decision Tree. Berdasarkan hasil evaluasi, model klasifikasi terbaik pada penelitian ini adalah dengan pengimplementasian algoritma Naïve Bayes tanpa disertai Stopword Removal  dengan nilai f1-score sebesar 71.78%. Sedangkan model klasifikasi terburuk pada penelitian ini adalah pada pengimplementasian algoritma Decision Tree  tanpa disertai Stopword Removal dengan nilai f1-score sebesar 58.08%. Untuk penerapan Stopword Removal, pada algoritma Decision Tree penerapannya lebih memberikan performa optimal jika dibandingkan dengan algoritma Naïve Bayes. Hal ini terlihat dengan terjadinya peningkatan nilai f1-score pada algoritma Decision Tree dan penurunan nilai f1-score pada algoritma Naïve Bayes. Salah satu faktor penurunan ini ialah dikarenakan Stopword Removal dapat mengurangi informasi dan mengubah makna tweet yang diolah dikarenakan ia akan melakukan penghapusan pada kata yang masuk kedalam daftar stoplist, sehingga tweet tersebut kehilangan sentimennya. Ditambah lagi penerapan stoplist NLTK yang digunakan untuk melakukan Stopword Removal pada penelitian ini lebih bekerja optimal pada pengklasifikasian dokumen dibandingkan sentimen.
Penerapan Algoritma Model Regresi pada Angka New Active Cases Covid-19 di Indonesia. Cintya Cintya; Arif Bijaksana Putra Negara; Tursina Tursina
Jurnal Aplikasi dan Riset Informatika Vol 1, No 1 (2022)
Publisher : Jurnal Aplikasi dan Riset Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jari.v1i1.59941

Abstract

Virus COVID-19 sudah menjadi wabah yang menyebar hampir keseluruh dunia dalam dua tahun terakhir. Kasus aktif COVID-19 dapat menjadi salah satu penyebab penularan virus ini. Hal ini dikarenan, kasus aktif merupakan sebutan bagi sekelompok orang yang dinyatakan positif COVID-19 dan masih dalam masa perawatan. Dalam penerapannya, penggunaan algoritma model regresi untuk memprediksi angka new active cases COVID-19 dapat dilakukan, berdasarkan feature yang berkolerasi baik dengan label. Tujuan dari penelitian ini adalah untuk menganalisa penerapan algoritma model regresi prediksi angka new active cases yang dibangun menggunakan algoritma Multiple Linear Regression dan Neural Network, dengan menambahkan proses optimasi hyperparameter terhadap hyperparameter dari masing-masing algoritma. Berdasarkan hasil pengujian akurasi terhadap kedua model, menunjukkan bahwa error yang dihasilkan oleh kedua model ini dianggap masih cukup besar, namun nilai R2-nya dianggap dapat menjelaskan hubungan antara variabel bebas dengan label yang kuat, serta model dapat mengikuti pola trend dari data aktualnya. Model yang memiliki akurasi terbaik, yaitu model yang dibangun menggunakan algoritma Neural Network yang menghasilkan nilai RMSE = 925.452, Absolute Error = 669.729 dan R2 = 0.866. 
Perbandingan Algoritma Logistic Regression dan Random Foret (Studi Kasus : Klasifikasi Emosi Tweet) Windari Oktapia Simanjuntak; Arif Bijaksana Putra Negara; Rina Septriana
Jurnal Aplikasi dan Riset Informatika Vol 1, No 2 (2023)
Publisher : Jurnal Aplikasi dan Riset Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jari.v2i1.69682

Abstract

Media sosial telah menjadi tempat dimana setiap orang dapat mengungkapan perasan dan pikirannya tanpa batasan. Salah satu media sosial yang paling banyak digunakan adalah Twitter. Twitter memiliki 238 juta pengguna aktif dan memberi pengguna akses untuk mencari informasi melalui Tweet tertentu. Sehingga Twitter dapat dijadikan sebagai sumber informasi untuk menganalisis emosi seseorang berdasarkan tulisan/Tweet yang dibuatnya. Dalam menganalisis emosi sebuah Tweet, diperlukan suatu metode untuk mengklasifikasikan Tweet ke dalam kelas emosi yang tepat. Klasifikasi emosi Tweet bertujuan untuk mengelompokkan Tweet ke dalam kelas emosi yang telah ditentukan sebelumnya seperti kemarahan, kegembiraan, ketakutan, cinta, dan kesedihan. Algoritma yang digunakan untuk membangun model machine learning untuk klasifikasi emosi yaitu Logistic Regression dan Random Forest. Tujuan dari penelitian ini adalah untuk mengetahui algoritma klasifikasi Multinomial Naive Bayes dan Decision Tree mana yang lebih baik dengan membandingkan hasil nilai accuracy dari algoritma klasifikasi tersebut. Penelitian ini juga menerapkan metode SMOTE. Hasil penelitian menunjukkan bahwa model klasifikasi Logistic Regresion memiliki nilai accuracy tertinggi sebesar 78.22%. Sedangkan model klasifikasi Random Forest memiliki nilai accuracy tertinggi sebesar 72.41%.
Comparison of Support vector machine and Naïve Bayes Classification Algorithms Using VADER and Lexicon based Labelling on Indonesian and English Tweets Sunarko, Ponco; Putra Negara, Arif Bijaksana; Septiriana, Rina
Jurnal Aplikasi dan Riset Informatika Vol 3, No 1 (2024)
Publisher : Jurnal Aplikasi dan Riset Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/juara.v3i1.86468

Abstract

Sentiment analysis is essential in natural language processing, and it helps understand public opinion from text, especially on social media. This research compares the effectiveness of Naive Bayes and Support vector machine (SVM) algorithms in sentiment classification of automatically labelled tweets using VADER and Lexicon-based methods. The data consists of Indonesian and English tweets collected through scrapping. The methodology includes business understanding, data understanding, data preparation, modelling, evaluation, and deployment stages. In the preprocessing stage, the data is cleaned and divided into 300 sentences for test data in Indonesian and English; each data will be labelled manually, and then 3762 sentences for Indonesian data and 4308 sentences for English data will be used as training data. The highest accuracy on automatic labelling against manual labelling is on Lexicon-based labelling, showing 66% accuracy for Indonesian and 55% for English. Text features were extracted using TF-IDF, and the model was trained and tested with the labelled data. The results showed that SVM with Lexicon-based auto-labelling had the best performance, with an accuracy of 44% for Indonesian and 57% for English. The combined accuracy of automatic labelling and classification was 29% for Indonesian and 31% for English. Factors such as tweet length, dictionary limitations, and use of slang affected the accuracy. The analysis also showed biases in the data and auto-labelling results.
Implementasi Metode K-Means Clustering dan Algoritma Cosine Similarity pada Repository Digital Jurusan Informatika Riza, Abu; Negara, Arif Bijaksana Putra; Pratiwi, Helen Sasty
Jurnal Aplikasi dan Riset Informatika Vol 2, No 2 (2024)
Publisher : Jurnal Aplikasi dan Riset Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/juara.v2i2.73974

Abstract

Penelitian ini bertujuan untuk mengelola data dokumen tugas akhir dalam Repositori Digital Jurusan Informatika. Fokus pengolahan data adalah pengelompokan dokumen berdasarkan abstrak dan penghitungan tingkat kemiripan antara dokumen-dokumen tersebut. Prosesnya dimulai dengan mengambil abstrak dari setiap dokumen tugas akhir dan melakukan pemrosesan teks menggunakan metode Nazief-Adriani. Kemudian, dilakukan perhitungan bobot kata dengan algoritma TF-IDF dan pengelompokan dokumen menggunakan K-Means Clustering. Selanjutnya, dihitung tingkat kemiripan antara dokumen-dokumen dalam kelompok menggunakan Cosine Similarity. Penelitian ini juga mengimplementasikan sistem berupa website yang memungkinkan pengguna mengakses dan memanfaatkan hasil pengolahan data. Diharapkan penelitian ini dapat memberikan pengelompokan dokumen tugas akhir yang efisien dan akurat berdasarkan abstrak, serta tingkat kemiripan yang baik antara dokumen-dokumen tersebut. Hal ini akan membantu pengguna mencari informasi relevan dan meningkatkan manajemen Repositori Digital Jurusan Informatika.