Claim Missing Document
Check
Articles

Found 8 Documents
Search

Real-Time Lighting Control System with Fuzzy-Mamdani for Smart Home Application Dimas Budianto; Siti Nurmaini; Bambang Tutuko; Sarifah Putri Raflesia
Computer Engineering and Applications Journal Vol 7 No 3 (2018)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1014.261 KB) | DOI: 10.18495/comengapp.v7i3.267

Abstract

The use of pervasive computing in the context of home automation equipment will greatly facilitate life. Several building still use manual switch to turn on or turn off the lighting system. It becomes ineffective if the house has a lot of lights, due to it sometimes forget to turn off. Hence, the real-time control system for automatic lighting processing is desirable. An automatic control system will allow to control the illumination and it will decrease the energy costs. In this paper, the Fuzzy logic system-based Mamdani style is used to adjust the intensity of the lights. Based on simple algorithm the controller board is working in a real-time condition. As a result found, the implementation is successfully to control the lighting system with good performance. Thus, the fuzzy system can be built smart home concept that facilitate the human life.
Sistem Rekomendasi Makanan Untuk Penderita Diabetes Melitus 2 dengan Algoritma Content-based Filtering Caesar Rizky Kurniawan; Firdaus Firdaus; Sarifah Putri Raflesia
Generic Vol 10 No 2 (2018): Vol 10, No 2 (2018)
Publisher : Fakultas Ilmu Komputer, Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Diabetes Melitus (DM) adalah penyakit kronis kompleks yang membutuhkan perawatan medis terus menerus dengan strategi pengurangan risiko multifactorial di luar kendali glikemik. Secara umum penyakit diabetes di klasifikasikan menjadi dua tipe, yakni diabetes tipe 1 yang disebabkan oleh kelainan gen dan tipe 2 yang terjadi karena pola hidup yang tidak sehat. Salah satu penyebab DM yakni konsumsi makanan yang tidak sehat dan jarang melakukan aktifitas olahraga. Untuk itu diperlukan sebuah sistem perekomendasi yang dapat memberikan saran-saran yang bersifat personal berdasarkan pada preferensi yang diberikan oleh pasien penderita DM 2. Sistem Perekomendasi dapat memberikan saran yang efisien untuk mempersempit ruang informasi sehingga pengguna diarahkan ke item yang sesuai dengan kebutuhan berdasarkan preferensi mereka. Dalam hal ini. Metode yang digunakan adalah Content Based Filtering. Metode Content Based Filtering merekomendasikan suatu item dengan cara mencari tingkat kesamaan antara item yang sebelumnya pernah di lihat, diberi like atau pun dipilih dengan item lain. Bahasa pemrograman yang digunakan adalah PHP dengan menggunakan framework Codeigniter. Berdasarkan hasil penelitian penulis menyimpulkan bahwa sistem ini dapat merekomendasikan makanan kepada pasien sesuai dengan preferensinya sehingga pasien dapat lebih efisien dalam menentukan menu makanan.
Pengembangan Sistem Informasi Manajemen Aset Pada PT.X Adelia Azahra; Sarifah Putri Raflesia; Dinda Lestarini
Generic Vol 12 No 2 (2020): Vol 12, No 2 (2020)
Publisher : Fakultas Ilmu Komputer, Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sistem informasi adalah salah satu hal terpenting dalam sebuah perusahaan. Penggunaan sistem informasi dapat menjamin kualitas informasi yang disajikan dan membantu organisasi dalam mengambil keputusan berdasarkan informasi tersebut. Inventarisasi adalah rekaman data yang berkaitan dengan barang atau aset dalam perusahaan. Pada saat ini PT.X dalam pengelolaan data persediaan barang masih sering mengalami kesulitan. Seperti kesulitan dalam pengontrolan data barang, pencarian data barang, barang yang sudah dilelang, dan barang yang sedang diperbaiki. Masalah ini mengakibatkan kurangnya efisiensi laporan persediaan yang disebabkan oleh manajemen data yang dilakukan secara manual. Oleh karena itu, sistem informasi dikembangkan untuk mengelola proses inventaris di PT.X.
The employment of gamification towards excellence in police services management Sarifah Putri Raflesia; Taufiqurrahman Rusdy; Dinda Lestarini; Firdaus Firdaus; Dinna Yunika Hardiyanti
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1643-1650

Abstract

Gamification is a motivation and psychological-oriented approach which aims to boost user participation and engagement. It is commonly applied to business process and information systems which need outcomes improvement such as educational system, customer relationship management, human resource management system, health information system, so forth. The main purpose of gamification is using game elements to non-game purpose in order to motivate users. Unfortunately, building gamification system is not similar to build general software because developer needs to identify considerable psychology aspects and also engage other expertise. In this research, gamification framework and its implementation are proposed which took police department as research object. We present gamified-police management system development framework to build the gamified-police management system and its implementation in order to gain police engagement and public trust.
Opinion Mining of Light Rail Transit Development in Indonesia Sarifah Putri Raflesia; Dinda Lestarini; Firdaus Firdaus; Desty Rodiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 2: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i2.pp791-796

Abstract

Light rail transit (LRT), or fast tram is urban public transport using rolling stock similar to a tramway, but operating at a higher capacity, and often on an exclusive right-of-way. Indonesia as one of developing countries has been developed the LRT in two cities of Indonesia, Palembang and Jakarta. There are opinions toward the development of LRT, negative and positive opinions. To reveal the level of LRT development acceptance, this research uses machine learning approach to analyze the data which is gathered through social media. By conducting this paper, the data is modeled and classified in order to analyze the social sentiment towards the LRT development.
Using machine learning approach towards successful crowdfunding prediction Sarifah Putri Raflesia; Dinda Lestarini; Rizka Dhini Kurnia; Dinna Yunika Hardiyanti
Bulletin of Electrical Engineering and Informatics Vol 12, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i4.5238

Abstract

Crowdfunding is a concept that emerged due to difficulties in raising funds for community business projects, social activities, micro-enterprises, and start-ups conventionally. Crowdfunding uses internet technology as a bridge between the donor and the recipient of funds so that it can reach a wider range of donors. This study aims to compare the performance of machine learning approaches in predicting crowdfunding campaign success. Three machine learning algorithms were employed to predict crowdfunding campaign success, namely logistic regression, random forest, and extreme gradient boosting (XGBoost). The dataset used in this study contains data about all projects posted on Kickstarter from January 2020 to September 2022. To improve the prediction model's performance, experiments using principal component analysis (PCA) feature reduction and log transformation were conducted. The results show that the implementation of log transformation on the dataset can increase the prediction model's performance. Meanwhile, XGBoost algorithm performs better than linear regression and random forest.
SISTEM RANCANGAN BANGUN SISTEM INFORMASI DESA PADA DESA REBO KABUPATEN BANYUASIN Hardini Novianti; Dinna Yunika Hardiyanti; Sarifah Putri Raflesia; Dinda Lertarini; Ahmad Rifai; Dwi Rossa Indah
Jurnal Pengabdian Kolaborasi dan Inovasi IPTEKS Vol. 1 No. 1 (2023): Februari
Publisher : CV. Alina

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (649.934 KB) | DOI: 10.59407/jpki2.v1i1.3

Abstract

Sistem Informasi Desa (SID) merupakan sebuah aplikasi website yang didalamnya memuat tentang informasi data penduduk, layanan publik, produk hukum, dan informasi tentang kegiatan dan program desa yang dikelola oleh pemerintah desa untuk mendukung perkembangan desa menuju desa maju dan mandiri. Secara kuantitatif Kecamatan Rambutan terletak di Kabupaten Banyuasin. Data-data di kantor desa belum terintegrasi secara online sehingga diperlukan adanya website desa untuk mengintegrasikan dan memudahkan dalam mengakses data desa. Kata Kunci : Sistem Informasi Desa (SID)
Analysis of Public Sentiment on Election Results using Naïve Bayes in Social Media X Ahmad Syakir Muliana; Dinda Lestarini; Sarifah Putri Raflesia
Sistemasi: Jurnal Sistem Informasi Vol 13, No 6 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i6.4592

Abstract

The objective of the research is to examine the public opinion regarding the 2024 Indonesian election results by applying Naïve Bayes to social media data obtained from platform X of Twitter. A dataset comprising 2,500 election-related tweets was obtained by web scraping and then subjected to tokenization, stopword elimination, stemming, and TF-IDF weighting for preprocessing. The application of the Synthetic Minority Oversampling Technique (SMOTE) was attempted to mitigate class imbalance. The performance of the Naïve Bayes model was assessed using Stratified K-Fold Cross-Validation. The model achieved an average accuracy of 66.90% on the test set and 80% during cross-validation. The results demonstrate successful categorization of positive sentiment, although the model encountered difficulties in precisely detection of negative and neutral sentiments. The results underscore significant consequences for policymakers and political parties in formulating effective communication strategies. Further study is advised to investigate sophisticated algorithms to improve the accuracy of sentiment classification, namely in detecting neutral sentiments.