Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Biomedical Science and Bioengineering

The Performance Comparison of Machine Learning Models for COVID-19 Classification Based on Chest X-ray Elvira Sukma Wahyuni
Journal of Biomedical Science and Bioengineering Vol 2, No 1 (2022)
Publisher : Center for Biomechanics, Biomaterials, Biomechantronics and Biosignal Processing (CBOIM3S)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jbiomes.2022.v2i1.1-6

Abstract

COVID-19 has become a pandemic spread to nearly all countries in the world. This virus has caused many deaths. Screening using a chest X-ray is an alternative to find out positive COVID-19 patients. Chest X-ray is advantageous because every hospital must have an X-ray device so that hospitals do not need additional equipment to detect COVID-19-positive patients. This study aims to compare the machine learning models of Naive Bayes, Decision Tree, K-Nearest Neighbor, and Logistic Regression to predict COVID-19 positive patients. The stages of the research carried out by this study are the Pre-process stage, feature extraction, and classification. The results showed that the Naïve Bayes classification method got the highest performance with an accuracy of 95.24%.