Claim Missing Document
Check
Articles

Found 5 Documents
Search

Perbaikan Min-Max Distribusi Dengan Multiple Criteria ABC Analysis NG-Model Untuk Pengoptimalan List Part Number Zulhendra Hanif; Muhammad Hisjam; Wakhid Ahmad Jauhari
Jurnal Ilmiah Teknik Industri Vol. 18, No. 1, Juni 2019
Publisher : Department of Industrial Engineering Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/jiti.v18i1.7727

Abstract

PT GMF Aeroasia Tbk. is the largest MRO company in Indonesia. This company has 67 plants worldwide. With the many plants that must be serviced, the complex process of repairing aircraft with spare parts that exceeds 15,000 types. Part distribution is a very big challenge and must be faced by companies where part distribution is done with multi-stage warehouses. At present the main warehouse has problems with the inefficiency of the min-max distribution system at each plant where the system aims to bond the parts that have the greatest frequency of demand to the sub-warehouse at the plant. This study discusses the improvement of Min-Max distribution with ABC Analysis NG-Model Multiple Criteria which aims to improve the efficiency of the list part number with the frequency of order transfer requests and the most optimal performance at 9 internal plants with the largest part demand activity. The proposed method is known to be able to increase min-max accommodation including, Transfer Order frequency from 23% to 40.80% and weekly delivery performance from 22% to 62.69%. In addition, this method can also reduce the amount of part number on Min-max with the results of Transfer Order accommodation and increased performance from the methods currently used.
Pemilihan Lokasi Instalasi Pengolahan Air Limbah untuk Kawasan Industri Tahu-Tempe Menggunakan Fuzzy TOPSIS Yusuf Priyandari; I Wayan Suletra; Wakhid Ahmad Jauhari; Hansen Kusuma
Performa: Media Ilmiah Teknik Industri Vol 18, No 2 (2019): Performa: Media Ilmiah Teknik Industri
Publisher : Industrial Engineering, Faculty of Engineering, Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.225 KB) | DOI: 10.20961/performa.18.2.32384

Abstract

Instalasi pengolahan air limbah (IPAL) diperlukan oleh industri tahu-tempe agar bisa mengurangi dampak lingkungan. Bagi industri-industri kecil dan menengah (IKM) tahu-tempe, instalasi tersebut lebih baik dibangun secara komunal untuk mengoptimalkan biaya pembuatan dan kapasitas. Permasalahan yang kemudian timbul adalah berapa jumlah kebutuhan IPAL dan di lokasi mana saja instalasi tersebut dibangun. Permasalahan inilah yang dihadapi oleh Pemerintah Kota Surakarta ketika merencanakan pembangunan beberapa IPAL di kawasan industri tahu-tempe Mojosongo, Kota Surakarta. Oleh karena itu, penelitian ini bertujuan memilih alternatif lokasi IPAL komunal dengan mempertimbangkan sejumlah kriteria objektif dan subjektif. Kriteria-kriteria tersebut dikelompokkan menjadi kriteria teknis, administratif dan kriteria sosial. Metode fuzzy TOPSIS digunakan dalam memilih alternatif lokasi yang optimal. Hasil penelitian memberikan rekomendasi bagi pemerintah Kota Surakarta untuk membangun empat titik lokasi IPAL komunal yang dapat digunakan untuk empat puluh satu IKM tahu-tempe di kawasan Mojosongo, Kota Surakarta
Perancangan Perangkat Pembelajaran Internet of Things (IoT) dan Pengenalan Robotika Kepada Siswa Sekolah Menengah di Surakarta Sekitarnya Pringgo Widyo Laksono; Retno Wulan Damayanti; Cucuk Nur Rosyidi; Eko Pujiyanto; Wakhid Ahmad Jauhari; Anindya Rachma Dwicahyani
Jurnal Pengabdian Masyarakat dan aplikasi Teknologi (Adipati) Vol 2, No 2 (2023)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pemahaman dan keterampilan pada siswa sekolah menengah mengenai Internet of Things (IoT) dan teknologi robotika adalah hal yang penting untuk menjawab tantangan global. Melalui pengenalan IoT dan robotika, siswa mendapatkan kesempatan untuk merancang, membangun, dan memprogram perangkat IoT dan robot secara langsung. Tujuan program ini adalah untuk memperkenalkan siswa pada konsep dan penerapan teknologi serta membantu mereka mengembangkan keterampilan yang relevan untuk dunia kerja abad ke-21. Siswa diharapkan dapat meningkatkan pemahaman mereka tentang IoT dan robotika, sehingga mereka lebih siap menghadapi tuntutan dunia kerja yang semakin berkembang di era revolusi industri 4.0. Selain itu, mitra industri yang terlibat dalam program ini, CV Enuma Technology, akan mendapatkan manfaat dalam mengembangkan produk media pembelajaran yang dapat dikomersilikilkan di pasar secara lebih luas. Melalui program ini, mitra industri dapat meningkatkan kualitas produk yang dibutuhkan oleh konsumen serta meningkatkan daya saing di pasar teknologi yang terus berkembang.
Optimizing the Supply Chain for Recycling Electric Vehicle NMC Batteries Fransisca Indraningsih Kasy; Muhammad Hisjam; Wakhid Ahmad Jauhari; Syed Ahmad Helmi Syed Hassan
Jurnal Optimasi Sistem Industri Vol. 23 No. 2 (2024): Published in January 2025 (published late, please read our note)
Publisher : The Industrial Engineering Department of Engineering Faculty at Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (548.594 KB) | DOI: 10.25077/josi.v23.n2.p207-226.2024

Abstract

The rapid growth of electric vehicle production has led to increased waste batteries that can no longer be used. This increase causes environmental and economic challenges. Lithium-ion battery waste harms the environment as it contains toxic and flammable chemicals. New raw materials need to be procured economically due to the need for more infrastructure and a circular economy. Therefore, the solution to overcome the impact of the accumulation of lithium battery waste is to recycle the battery. Recycling end-of-life batteries is necessary to mitigate material supply risks, reduce demand for new materials, and mitigate harmful environmental and health impacts. This study aims to provide a conceptual model for the supply chain network design of electric vehicles' Nickel Manganese Cobalt (NMC) battery recycling process. We developed a mathematical model to determine the allocation of multi-product recycling products from multi-suppliers and other related entities such as manufacturers and landfills over multiple periods. The analysis method utilizes techno-economic investment feasibility analysis and load distance method. The problem in the recycling process supply chain network is formulated in a Mixed Integer Linear Programming (MILP) model. The MILP optimization results show that the proposed model produces a globally optimal solution for allocating NMC batteries. The application of this study is to provide a solution to the treatment of waste batteries from electric vehicle end-users in Java Island, Indonesia. In addition, it can develop economic opportunities in the waste battery recycling business in the electric vehicle industry. It is building a contribution to a sustainable electric vehicle battery management system by reducing the dependence on demand for new materials from mining and analyzing the sustainability of the NMC electric vehicle battery recycling process.
A Framework for Sustainable Supplier Selection Integrating Grey Forecasting and F-MCDM Methods: A Case Study Enty Nur Hayati; Wakhid Ahmad Jauhari; Retno Wulan Damayanti; Cucuk Nur Rosyidi; Muhammad Hafidz Fazli Bin Md Fauadi
Jurnal Optimasi Sistem Industri Vol. 24 No. 1 (2025): Published in June 2025
Publisher : The Industrial Engineering Department of Engineering Faculty at Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/josi.v24.n1.p63-83.2025

Abstract

Selecting appropriate suppliers is critical for healthcare organizations to ensure high-quality, reliable, and sustainable patient care services. In an increasingly competitive environment, hospitals must optimize supplier selection not only based on economic factors but also by integrating environmental and social sustainability considerations. This study aims to create a strong system for choosing sustainable suppliers in healthcare by combining fuzzy-based multi-criteria decision-making (MCDM) methods with Grey Forecasting GM(1,1) to handle uncertainty and changes in performance over time. The proposed framework applies the Fuzzy Best-Worst Method (F-BWM) to determine the relative importance of sustainability criteria, while the Fuzzy Additive Ratio Assessment (F-ARAS) method is used to rank suppliers based on these weighted criteria. Grey Forecasting GM(1,1) is employed to predict supplier performance for future periods, with forecasting accuracy evaluated through Mean Absolute Percentage Error (MAPE). All supplier forecasts achieved MAPE values below 5%, indicating very high prediction reliability. Empirical results from a case study at a general hospital in Indonesia confirm that social aspects, such as patient safety and reputation, are prioritized over economic and environmental considerations. Practically, the proposed framework enables healthcare institutions to holistically evaluate suppliers, specifically reducing risks related to supply disruptions and quality inconsistencies. The model performs best under conditions of limited or uncertain data availability, where supplier historical performance trends can be leveraged to forecast future reliability and sustainability outcomes. The prioritization of sustainability criteria yields social criteria (weight = 0.3703) as the most important, followed by economic (0.3609) and environmental (0.2688) criteria.