Ade Danova
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok, Kampus Gn.Kelua, Samarinda 75123, East Kalimantan

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Science and Technology Indonesia

Anti-tyrosinase Activity of 3’,4’,5’-Trimethoxychalcones: Experimental and Computational Studies Danova, Ade; Hermawati, Elvira; Chavasiri, Warinthorn; Mujahidin, Didin; Musthapa, Iqbal; Kurniadewi, Fera
Science and Technology Indonesia Vol. 10 No. 4 (2025): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.4.982-989

Abstract

Tyrosinase inhibitors are utilized as preservatives in the food industry and skin-lightening agents in the medical and cosmetic sectors. However, there has been little progress in clinical trials owing to challenges such as low bioavailability, significant skin irritation, and instability. Hence, the objective of this study was to evaluate the inhibitory activity of 3’,4’,5’-trimethoxychalcones through in vitro, molecular docking and molecular dynamics studies targeting tyrosinase. Five 3’,4’,5’-trimethoxychalcones (1-5) were evaluated their biological activity against tyrosinase for the first time. Compounds 4 and 5 were excellent inhibitory activity against tyrosinase with IC50 values of 1.9 and 1.7 μm compared with kojic acid and ascorbic acid. Isovanillin and catechol moieties are vital in this present study. This result was supported with molecular docking by shaping interaction in the catalytic site with histidine residues and the stability evaluation of the inhibitor-protein complexes using molecular dynamics simulation. The lipinski’s rules showed a fit with two potential inhibitors (4, 5). Therefore, 3’,4’,5’-trimethoxychalcones possessing isovanillin and catechol parts in the B ring are promising candidate for further study as tyrosinase inhibitors by evaluating their efficacy in vitro and in vivo.
Intramolecular Oxa-Michael Cyclization of 2’-Hydroxychalcones for the Synthesis of Flavanones: A Comparative Study Ramadhini, Rizky Annisa; Danova, Ade; Roswanda, Robby
Science and Technology Indonesia Vol. 10 No. 4 (2025): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.4.1169-1178

Abstract

In this study, flavanones were synthesized using a two-step reaction process starting from 2’ hydroxyacetophenone and aldehydes. Claisen-Schmidt condensations were carried out on the starting materials to produce 2’-hydroxychalcones with mono-, di-, and tri-substituents on ring B. Subsequently, flavanones were produced via intramolecular oxa-Michael cyclization under three different reaction conditions: methanesulfonic acid in ethanol, sodium acetate in methanol, and piperidine in water. These approaches aimed to investigate the steric and electronic effects to achieve high yields in optimal reaction conditions for flavanone synthesis. Twelve 2’-hydroxychalcones (1a-1l) were successfully synthesized with yields ranging from 17% to 99%. The use of methanesulfonic acid in ethanol resulted in modest flavanone yields (11% for 2a, 13% for 2c). The synthesis of flavanones using sodium acetate was successful for seven 2’-hydroxychalcones (2a-2g), yielding products with varying yields (2-49%). Furthermore, piperidine was effective for three 2’-hydroxychalcones (1a, 1b, 1e), resulting in high flavanone yields (74-93%). These findings indicate that the three reaction conditions are only effective for certain 2’-hydroxychalcones.