Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Computer Science Advancements

Use of Artificial Intelligence in Predicting Electricity Needs in Smart Cities Fawait, Aldi Bastiatul; Li, Zhang; Hussain, Sara
Journal of Computer Science Advancements Vol. 3 No. 1 (2025)
Publisher : Yayasan Adra Karima Hubbi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70177/jsca.v3i1.1620

Abstract

The rapid urbanization and adoption of smart city technologies have led to increasing complexities in managing electricity demand. Traditional methods of forecasting electricity needs often fail to accommodate the dynamic and real-time nature of energy consumption in smart cities. Artificial Intelligence (AI) offers a promising approach by leveraging machine learning algorithms and predictive analytics to address these challenges. This study explores the use of AI in predicting electricity needs, focusing on its applicability in optimizing energy distribution and reducing inefficiencies in smart city infrastructures. The research aims to develop an AI-based predictive model to forecast electricity demand using historical and real-time data. The methodology involves data collection from smart meters, weather forecasts, and demographic records, followed by training machine learning algorithms such as Random Forest, Support Vector Machines, and Neural Networks. Performance metrics, including prediction accuracy, computational efficiency, and scalability, were analyzed to evaluate the model's effectiveness. Results indicate that AI-based models outperform traditional forecasting methods, achieving an average prediction accuracy of 92%. Neural Networks demonstrated the highest performance, particularly in handling complex and nonlinear data patterns. The AI model also showcased scalability by adapting to increasing datasets without significant degradation in performance. The study concludes that AI is a transformative tool for predicting electricity needs in smart cities. By enhancing forecast accuracy and enabling efficient energy distribution, AI contributes to sustainable urban development and smarter energy management systems.