Claim Missing Document
Check
Articles

Found 15 Documents
Search

KUALITAS LAYANAN SISTEM INFORMASI PENGARSIPAN MENGGUNAKAN METOE SERVQUAL rice Novita
Seminar Nasional Teknologi Informasi Komunikasi dan Industri 2019: SNTIKI 11
Publisher : UIN Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (619.844 KB)

Abstract

Bank Indonesia - Records Management System (BI-RMS) is a web-based Bank Indonesia archive management service. This system began operating in early 2012 at the Bank Indonesia Head Office. Then in mid-2013, the BI-RMS system began operating at KPw Bank Indonesia, Riau Province. With various features offered in the BI-RMS, of course, it will simplify the management of records. However, there are only a few employees at KPw Bank Indonesia in Riau Province who use BI-RMS. Even though every employee can access the BI-RMS, only a few people often use the system. Even the system is more often used by apprentice employees than permanent employees. Therefore, a system analysis is needed to determine the quality of system services using the Service Quality (ServQual) method. The results of the analysis are in the form of ServQual gap analysis and service quality level per ServQual dimension. The results of this analysis are expected to solve the problems that exist in the system
PENERAPAN MACHINE LEARNING PADA ANALISIS SENTIMEN APLIKASI MYTELKOMSEL MENGUNAKAN DATA ULASAN GOOGLE PLAYSTORE Fauzan, Farin Junita; M Afdal; Rice Novita; Mustakim
The Indonesian Journal of Computer Science Vol. 13 No. 3 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i3.4024

Abstract

The MyTelkomsel application is a digital access platform that provides telecommunications services. Therefore, sentiment analysis of MyTelkomsel application users is relevant for obtaining valuable insights for application development and management. This research aims to conduct sentiment analysis and compare methods on review data of the MyTelkomsel application. The dataset used is divided into two topics: service and user reviews. The labeling method in this research uses Lexicon Based and Indonesian Language Experts with three classes: positive, negative, and neutral. The labeled review dataset is then applied with SVM and Random Forest methods. The results obtained from applying two datasets with two labeling approaches indicate that the approach by experts tends to be more accurate compared to the lexicon-based approach because the highest accuracy of the lexicon-based approach is 79%, while the expert labeling achieves an accuracy of 83%. Additionally, in this study, the SVM algorithm demonstrates the highest accuracy, namely 83%, on the user dataset analyzed by Indonesian Language Experts.
Sentiment Analysis of Gojek, Grab, Maxim Applications Using Support Vector Machine Algorithm Iqrom, Muhammad; M. Afdal; Rice Novita; Medyantiwi Rahmawita; Tengku Khairil Ahsyar
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 1 (2025): March
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/52fycr56

Abstract

This research analyzes user sentiment towards three major online transportation applications in Indonesia—Gojek, Grab, and Maxim using the \SVM algorithm. The analysis results indicate that Maxim has the highest positive sentiment rate (42.45%) compared to Grab (32.83%) and Gojek (20.21%). Maxim's advantages lie in its competitive pricing and driver professionalism. However, Gojek recorded the best performance in sentiment classification with an accuracy of 94%, followed by Maxim (90%) and Grab (87%). The evaluation based on five main variables (general sentiment, drivers, services, applications, and pricing/costs) reveals the strengths of each application in different categories. Maxim excels in general sentiment and driver satisfaction, Grab dominates in pricing/cost, and Gojek stands out in the application category. Wordcloud visualization reveals frequently mentioned words such as "driver," "application," and "order," reflecting users' primary concerns and experiences. This research provides valuable insights for online transportation service providers to improve service quality, although it has limitations in exploring external factors such as user demographics and marketing strategies, as well as relying on a single algorithm without comparison. The choice of the SVM algorithm is based on its ability to handle well-structured data and provide high accuracy in classification. SVM is effective in finding the optimal hyperplane that clearly separates data classes, making it suitable for sentiment analysis involving multiple variables.
Socialization and Training on the Use of the Alfabeth Applicationin Special Schools: Sosialisasi dan Pelatihan Penggunaan Aplikasi Alfabeth Pada Sekolah Luar Biasa Rice Novita; Rahmawita, Medyantiwi; Novita, Rita
Dinamisia : Jurnal Pengabdian Kepada Masyarakat Vol. 9 No. 4 (2025): Dinamisia: Jurnal Pengabdian Kepada Masyarakat
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/514m1094

Abstract

Pendidikan bagi anak berkebutuhan khusus di Sekolah Luar Biasa (SLB) memerlukan pendekatan inovatif, terutama dalam pemanfaatan teknologi untuk mendukung proses belajar-mengajar. Salah satu solusi yang ditawarkan adalah penggunaan aplikasi Alfabeth, sebuah platform edukatif yang dirancang untuk meningkatkan keterampilan membaca, menulis, dan berkomunikasi bagi siswa berkebutuhan khusus. Penelitian ini bertujuan untuk mensosialisasikan dan memberikan pelatihan kepada guru serta tenaga pendidik di SLB mengenai penggunaan aplikasi Alfabeth dalam kegiatan pembelajaran. Metode yang digunakan dalam kegiatan ini mencakup tahap sosialisasi, pelatihan praktik, serta evaluasi terhadap efektivitas penggunaan aplikasi dalam mendukung pembelajaran. Sosialisasi dilakukan melalui seminar dan diskusi interaktif untuk mengenalkan fitur serta manfaat aplikasi. Pelatihan praktik diberikan dalam bentuk demonstrasi penggunaan serta simulasi langsung oleh para peserta. Evaluasi dilakukan dengan mengumpulkan umpan balik dari peserta serta mengamati perubahan dalam metode pengajaran yang diterapkan. Hasil dari kegiatan ini menunjukkan bahwa aplikasi Alfabeth mampu meningkatkan interaksi dan keterlibatan siswa dalam belajar. Guru merasa terbantu dalam menyampaikan materi dengan lebih menarik dan interaktif. Selain itu, siswa lebih termotivasi dalam mengenal huruf dasar. Dengan adanya pelatihan ini, diharapkan para pendidik dapat lebih optimal dalam memanfaatkan teknologi untuk mendukung perkembangan akademik dan sosial siswa berkebutuhan khusus di SLB.
Development of a Project-Based Learning Model in a Learning Management System using an Iterative Incremental Approach Rice Novita; Medyantiwi Rahmawita M; Raudah Islamiah
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 3 (2025): November
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/dh4xc832

Abstract

Technological innovation in education has driven the adoption of Learning Management Systems (LMS) as a primary platform for digital learning. However, current LMS implementations remain focused on knowledge transfer and have not fully supported Project-Based Learning (PjBL), a model that emphasizes active learner engagement in producing concrete outputs. This study aims to develop a project-based learning model within a learning management system using an iterative incremental approach in the software engineering course. The development method refers to the ADDIE model (Analysis, Design, Development, Implementation, and Evaluation) to design project-based learning syntax, which is then integrated into the LMS using the iterative incremental approach and system design based on Object-Oriented Analysis and Design (OOAD). The resulting product consists of a project-based learning module and web-based learning media, both validated by education and information technology experts. Validation results show that the learning module obtained a validity score of 0.83, while the learning media (LMS) obtained a score of 0.84, both categorized as valid. These findings indicate that the initial design of the PjBL-integrated LMS aligns with pedagogical and technical requirements, although its effectiveness and practicality have not yet been tested and remain areas for further research. The contribution of this study lies in integrating RPL-specific PjBL syntax into LMS features developed using the iterative incremental model, providing a foundation for more adaptive and collaborative PjBL-oriented LMS development in digital learning.