Claim Missing Document
Check
Articles

Penerapan Algoritma K-Nearest Neighbor pada Information Retrieval dalam Penentuan Topik Referensi Tugas Akhir Ramadhan Rakhmat Sani; Junta Zeniarja; Ardytha Luthfiarta
Journal of Applied Intelligent System Vol 1, No 2 (2016): Juni 2016
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v1i2.1189

Abstract

Perpustakan sebagai bagian penting universitas,   berperan sebagai sumber pustaka dan referensi laporan Tugas Akhir(TA). Semua koleksi tersebut ditempatkan dalam ruangan tertentu sesuai dengan kategorinya dan data tersebut sudah terkomputerisasi dengan baik di dalam server database. Permasalahan penelitian adalah  pencarian dan pengidentifikasian laporan Tugas  Akhir  berdasarkan  topik  yang  diangkat. Tujuan penelitian ini mendapatkan akurasi klasifikasi yang baik menggunakan algoritma K-Nearest Neighbor (KNN) dan menerapkannya kedalam sebuah program. Sehingga klasifikasi topik TA dapat menjadi solusi untuk menyelesaikan permasalahan tersebut. Kata kunci — Information Retrieval, K-Nearest Neighbor, Text Mining, Klasifikasi
Prediction on Deposit Subscription of Customer based on Bank Telemarketing using Decision Tree with Entropy Comparison Ardytha Luthfiarta; Junta Zeniarja; Edi Faisal; Wibowo Wicaksono
Journal of Applied Intelligent System Vol 4, No 2 (2019): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v4i2.2772

Abstract

Banking system collect enormous amounts of data every day. This data can be in the form of customer information,  transaction  details,  risk profiles,   credit   card   details,   limits   and   collateral    details, compliance  Anti Money Laundering (AML) related information, trade  finance  data,  SWIFT  and  telex  messages. In addition,  Thousands  of decision  are  made in Banking system. For example, banks everyday creates credit decisions,  relationship  start  up,  investment   decisions, AML  and  Illegal  financing  related decision.  To create this decision, comprehensive review on various  reports  and drills  down  tools  provided  by the banking systems is needed.  However, this is a manual process which  is  error  prone  and  time  consuming  due  to  large volume of transactional  and historical  data available. Hence, automatic knowledge mining is needed to ease the decision making process.  This research focuses on data mining techniques to handle the mentioned problem. The technique will focus on classification method using Decision Tree algorithms.  This research provides an overview of the data mining techniques and   procedures will be performed.   It also provides   an insight   into how these techniques can be used in deposit subscription  in banking system to make a decision making process easier and more productive. Keywords - Telemarketing, bank deposit, decision tree, classification, data mining, entropy.
Pattern Recognition Of Javanese Letter Using Template Matching Correlation Method Irham Ferdiansyah Katili; Fairuz Dyah Esabella; Ardytha Luthfiarta
Journal of Applied Intelligent System Vol 3, No 2 (2018): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v3i2.1954

Abstract

In this modern age, the impact of globalization is increasingly entering and expanding into most societies. One impact of globalization makes people prefer to learn the language and use a foreign language rather than the local language, especially the Java language. It is very influential on the knowledge of the community about the existence or the existence of Javanese Letter, especially in the field of education. In this study, In this research will be made an application to recognize the writing of Javanese Letter based on Optical Character Recognition (OCR). Matching templates correlation can be used as pattern recognition methods. How the Template Matching Algorithm works by matching the template image with the test image after going through the Pre-processing and segmentation process. From the research that has been done by using 10 character template and 20 data testing get accuracy equal to 93.44% and error rate 6.56%. So the Matching Template Algorithm can well recognize the Javanese Letter pattern.
Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda Ardytha Luthfiarta; Aris Febriyanto; Heru Lestiawan; Wibowo Wicaksono
JOINS (Journal of Information System) Vol 5, No 1 (2020): Edisi Mei 2020
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1680.015 KB) | DOI: 10.33633/joins.v5i1.2760

Abstract

Kondisi cuaca memiliki kecenderungan berubah, untuk itu badan meteorologi bekerja memprediksi perkiraan cuaca agar dapat memberikan peringatan dini apabila terjadi perubahan cuaca yang mendadak atau bahkan ekstrem. Dengan memprakirakan cuaca yang datang mendadak secara akurat, maka dapat mengambil langkah pencegahan agar dapat meminimalkan kerugian yang akan terjadi. Diperlukan beberapa variable atau parameter yang relevan untuk dapat memodelkan data dengan baik sehingga hasil prediksinya menjadi lebih akurat. Salah satu pendekatan pemodelan data untuk prediksi cuaca adalah supervised learning dengan teknik estimasi. Estimasi memberikan prediksi nilai pada atribut target atau class attribute yang bertipe numerical. Regresi linear berganda merupakan salah satu algoritma estimasi yang handal untuk memprediksi cuaca. Empat variable independent yakni, suhu, kelembaban, tekanan, dan kecepatan angin digunakan untuk memprakirakan curah hujan sebagai variable dependent. Data yang digunakan adalah data BMKG dari Stasiun Meteorologi Ahmad Yani Semarang tahun 2015-2017. Nilai koefisien determinasi R2 sebesar 25.5 persen menunjukkan bahwa keempat variabel yang digunakan secara bersamaan dapat menjelaskan nilai curah hujan sebagai variable dependent.
Transfer Learning with Xception Architecture for Snakefruit Quality Classification Rismiyati Rismiyati; Ardytha Luthfiarta
Journal of Applied Intelligent System Vol 7, No 2 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i2.6797

Abstract

Machine learning has been greatly used in the field of image classification. Several machine learning techniques perform very well in this task. The development of machine learning technique in recent years are in the direction of deep learning. One of the main challenge of deep learning is that it requires the number of the samples to be extremely large for the model to perform well. This is because the number of feature that trainable parameter are huge. One of the solution to overcome this is by introducing transfer learning. One of the architecture that is currently introduced is Xception architecture. This architecture is claimed to outperform VGG16, ResNet50, and inception in terms of model accuracy and model size. This research aims to classify snakefruit quality by using transfer learning with Xception architecture. This is to explore possibility to achieve better result as Xception architecture generally perform better than other available architecture in transfer learning. The snakefruit quality is classified into two classes. Hyperparameter value is optimized by several scenario to determine the best model. The best performance is achieved by using learning rate of 0.0005, momentum 0.9 and dropout value of 0 or 0.25. The accuracy achieved is 94.44%.
Sistem Rekomendasi Pembelian Smartphone berbasis Algoritma K-Means dan Singular Value Decomposition Ivan Zuhdiansyah; Ardytha Luthfiarta
Jurnal Nasional Teknologi dan Sistem Informasi Vol 10, No 1 (2024): April 2024
Publisher : Jurusan Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v10i1.2024.45-53

Abstract

Perkembangan teknologi informasi yang pesat, memberi dampak pada ketesedian informasi yang berlimpah. Hal ini menjadikan suatu masalah yang disebut kelebihan informasi, menyebabkan pengguna internet sulit memahami dan membuat keptusan. E-commerce merupakan salah satu yang terdampak dari kelebihan informasi, dengan banyaknya produk dan pengguna baik dari penjual maupun pembeli yang ada. Sistem rekomendasi adalah bagian penting dari e-commerce yang menjadi salah satu cara menangani kelebihan informasi, dengan memberikan rekomendasi produk kepada pembeli agar membantu menentukan pilihan. Dalam sistem rekomendasi memiliki permasalahan scalability, dimana banyaknya produk yang tersedia membuatnya menjadi tidak efektif dan efisien dalam memberikan rekomendasi kepada pembeli. Maka, penelitian ini mengusulkan metode sistem rekomendasi yang dikombinasikan teknik clustering. Menggunakan algoritma K-Means untuk mengelompokkan produk, kemudian algoritma Singular Value Decomposition (SVD) untuk membuat rekomendasi di dalam cluster yang terbentuk. Hasil keluaran model yaitu, rekomendasi produk dan prediksi rating yang diberikan pembeli dari produk yang direkomendasikan. Evaluasi model mendapatkan nilai dbi sebesar 0,703 untuk clustering, nilai rata-rata terbaik MAE 0.8150 dan RMSE 1.1781 untuk rekomendasi yang dihasilkan. Kesimpulan yang didapat bahwa metode ini dapat menangani masalah scalability dan memberikan rekomendasi yang akurat dengan nilai evaluasi yang lebih baik dibandingkan penelitian sebelumnya.
Improving Multi-label Classification Performance on Imbalanced Datasets Through SMOTE Technique and Data Augmentation Using IndoBERT Model Leno Dwi Cahya; Ardytha Luthfiarta; Julius Immanuel Theo Krisna; Sri Winarno; Adhitya Nugraha
Jurnal Nasional Teknologi dan Sistem Informasi Vol 9, No 3 (2023): Desember 2023
Publisher : Jurusan Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v9i3.2023.290-298

Abstract

Sentiment and emotion analysis is a common classification task aimed at enhancing the benefit and comfort of consumers of a product. However, the data obtained often lacks balance between each class or aspect to be analyzed, commonly known as an imbalanced dataset. Imbalanced datasets are frequently challenging in machine learning tasks, particularly text datasets. Our research tackles imbalanced datasets using two techniques, namely SMOTE and Augmentation. In the SMOTE technique, text datasets need to undergo numerical representation using TF-IDF. The classification model employed is the IndoBERT model. Both oversampling techniques can address data imbalance by generating synthetic and new data. The newly created dataset enhances the classification model's performance. With the Augmentation technique, the classification model's performance improves by up to 20%, with accuracy reaching 78%, precision at 85%, recall at 82%, and an F1-score of 83%. On the other hand, using the SMOTE technique, the evaluation results achieve the best values between the two techniques, enhancing the model's accuracy to a high 82% with precision at 87%, recall at 85%, and an F1-score of 86%.
Optimasi Logistic Regression untuk Deteksi Serangan DoS pada Keamanan IoT Primadya, Nauval Dwi; Nugraha, Adhitya; Luthfiarta, Ardytha; Fahrezi, Sahrul Yudha
Jurnal Eksplora Informatika Vol 13 No 2 (2024): Jurnal Eksplora Informatika
Publisher : Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/eksplora.v13i2.1065

Abstract

Keamanan perangkat Internet of Things (IoT) merupakan prioritas utama karena potensi risiko kerusakan perangkat dan kebocoran data yang dapat berdampak serius. Perangkat IoT telah membawa manfaat signifikan ke berbagai sektor, seperti kesehatan, transportasi, dan industri, namun tingkat serangan terhadapnya terus meningkat. Dalam mengatasi tantangan ini, pendekatan machine learning digunakan dengan memanfaatkan dataset CIC IOT ATTACKS 2023 dari University of New Brunswick. Untuk menghasilkan data yang berkualitas, dilakukan random undersampling untuk mengatasi ketidakseimbangan data, dan seleksi fitur menggunakan Recursive Feature Elimination untuk mendapatkan fitur terbaik. Pemilihan Logistic Regression sebagai algoritma pemodelan dipilih dengan pertimbangan yang matang. Logistic Regression dipilih karena kemampuannya memberikan interpretasi yang jelas terhadap kontribusi relatif setiap fitur terhadap prediksi keamanan perangkat IoT. Selain itu, model ini efisien secara komputasional, mengatasi ketidakseimbangan data, dan tahan terhadap overfitting, yang semuanya merupakan faktor krusial dalam konteks keamanan IoT. Hasil penelitian menunjukkan bahwa penggunaan Logistic Regression bersamaan dengan seleksi fitur memberikan tingkat akurasi tertinggi mencapai 97%, dengan waktu pemrosesan yang efisien sekitar 11 detik. Dari hasil ini, dapat disimpulkan bahwa kombinasi teknik random undersampling dan seleksi fitur menggunakan Recursive Feature Elimination secara positif memengaruhi akurasi pada model Logistic Regression, menjadikannya pilihan yang sesuai untuk meningkatkan keamanan perangkat IoT.
Sentiment Analysis of the 2024 Indonesian Presidential Dispute Trial Election using SVM and Naïve Bayes on Platform X Maharani, Zahra Nabila; Luthfiarta, Ardytha; Farsya, Nabila Zibriza
Building of Informatics, Technology and Science (BITS) Vol 6 No 1 (2024): June 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i1.5380

Abstract

Indonesian presidential dispute trial election are crucial activities in the democratic process where open exchanges of views and opinions occur. Sentiment analysis can help understand public opinion regarding these sessions. This study aims to conduct sentiment analysis of the 2024 Indonesian presidential dispute trial election using the Support Vector Machine (SVM) and Gausian Naïve Bayes (GNB) with Nazief Adriani and Sastrawi stemming methods on Platform X. The research addresses the challenge of uncertainty in interpreting public sentiment towards Indonesian presidential dispute trial election. SVM and GNB was chosen for its ability to classify large and complex data sets. The Nazief Andriani and Sastrawi stemming techniques were employed to reduce words to their base forms, thereby enhancing the quality of text analysis. The study was conducted on Platform X, which provides access to text data from various sources including social media and news platforms. The data used covered specific periods before, during, and after Indonesian presidential dispute trial election. The keywords used for the crawling process are “sidang sengketa pilpress”, “sidang sengketa pemilu”, and “sidang pilpres”. The classification technique is carried out by classifying it into two classes, namely positive and negative. In applying sentiment analysis using machine learning methods, there are several methods that are often used. Based on the results comparation of tests carried out on 2,443 tweets using SVM with Sastrawi stemming method produce the best accuracy of 91.1%, precision 90%, recall 91%., and F1-Score 91%.
Data-Driven Modeling of Human Development Index in Eastern Indonesia's Region Using Gaussian Techniques Empowered by Machine Learning Ganiswari, Syuhra Putri; Azies, Harun Al; Nugraha, Adhitya; Luthfiarta, Ardytha; Firmansyah, Gustian Angga
Journal of Applied Geospatial Information Vol 7 No 2 (2023): Journal of Applied Geospatial Information (JAGI)
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jagi.v7i2.6757

Abstract

The Human Development Index (HDI) is a statistical measure used to measure and evaluate the progress and quality of human life in a country. For the Government of Indonesia, HDI is important because it is used to create or develop effective policies and programs. In addition, HDI is also used as one of the allocators in determining the General Allocation Fund. The 2022 HDI data released by BPS shows that there has been an increase in the HDI in each district/city over the last 12 years, including in the regions of Eastern Indonesia. High and low HDI values are influenced by several factors, and there are indications that there is spatial diversity where surrounding areas tend to have HDI levels that are not far from the area. The Geographically Weighted Regression method is used in this study because it takes into account spatial aspects. However, the GWR model must be built repeatedly if there is regional expansion. Therefore, a GWR model that applies machine learning methods is needed where the model is built and tested using different datasets, namely training data and test data, so that the model can predict new data better. The results obtained are that the GWR model with test data has a better R-Square value when compared to the GWR model previously trained using training data, which is 0.9946702, based on the linear regression model shows the results that the most influential factor on HDI in Eastern Indonesia is expected years of schooling (X2).
Co-Authors ., Junta Zeniarza ., Junta Zeniarza Abu Salam Abu Salam Adhitya Nugraha Adhitya Nugraha Adhitya Nugraha Affandy Affandy Althoff, Mohammad Noval Aris Febriyanto Aryanti, Firda Ayu Dwi Astuti, Yani Parti Bagus Dwi Satya, Mohammad Wahyu Basiron, Halizah Cahya, Leno Dwi Catur Supriyanto Catur Supriyanto Defri Kurniawan Dhita Aulia Octaviani Dzaki, Azmi Abiyyu Edi Faisal Edi Sugiarto Egia Rosi Subhiyakto, Egia Rosi Erwin Yudi Hidayat Fahreza, Muhammad Daffa Al Fahrezi, Sahrul Fahrezi Fahrezi, Sahrul Yudha Fahri Firdausillah Fairuz Dyah Esabella Farandi, Muhammad Naufal Erza Farsya, Nabila Zibriza Fauzyah, Zahrah Asri Nur Firmansyah, Gustian Angga Ganiswari, Syuhra Putri Hafiizhudin, Lutfi Azis Haresta, Alif Agsakli Harun Al Azies Hasan Shobri Heru Lestiawan Huda, Alam Muhammad Ika Novita Dewi Imam Muttaqin, Almas Najiib Indrawan, Michael Irham Ferdiansyah Katili Ivan Zuhdiansyah Julius Immanuel Theo Krisna Junta Zeniarja Krisna, Julius Immanuel Theo L. Budi Handoko Leno Dwi Cahya Maharani, Zahra Nabila Mahardika, Pramesthi Qisthia Hanum Md. Mahadi Hasan, Md. Mahadi Michael Indrawan Muhammad Daffa Al Fahreza Muhammad Jamhari Muhammad Rafid Mumtaz, Najma Amira Muttaqin, Almas Najiib Imam Nauval Dwi Primadya Nisa, Laila Rahmatin Octaviani, Dhita Aulia Primadya, Nauval Dwi Rafid, Muhammad Ramadhan Rakhmat Sani Rismiyati Rismiyati Sahrul Yudha Fahrezi Salsabila, Pramesya Mutia Satya, Mohammad Wahyu Bagus Dwi Setiawan, Dicky Soeroso, Dennis Adiwinata Irwan Sri Winarno Sri Winarno Suprayogi Suprayogi Suryaningtyas Rahayu Syarifah, Ulima Muna Utomo, Danang Wahyu Wibowo Wicaksono Wibowo Wicaksono Wulandari, Kang Andini Wulandari, Kang, Andini Zarifa, Yasmine Zuhdiansyah, Ivan