Claim Missing Document
Check
Articles

Found 22 Documents
Search

Perbandingan Performansi Algoritma Proportional Integral Controller Enhanced (PIE) dan DropTail Pada Layanan VoIP Siti Amatullah Karimah
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 1 (2019): Maret, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2019.4.1.285

Abstract

Voice over Internet Protocol (VoIP) adalah teknologi yang menggunakan internet untuk melakukan komunikasi jarak jauh. VoIP berkembang seiring dengan berkembangan teknologi smartphone  yang pesat. Hal ini menyebabkan komunikasi menggunakan telepon konvensional sudah mulai ditinggalkan. Perkembangan teknologi VoIP yang pesat dengan penggunanya yang sudah sangat banyak mengakibatkan kemungkinan terajadinya bufferbloat pada jaringan. Permasalahan ini dapat diatasi dengan mekanisme pengatur antrian atau biasa disebut Active Queue Management (AQM). Ada berbagai macam AQM yang sudah dikembangkan seperti Proportional Integral controller Enhanced (PIE), Controlling Delay (Codel), DropTail dan sebagainya. Pada penelitian ini diimplementasikan dan dianalisis kualitas layanan VoIP dengan menerapkan Proportional Integral controller Enhanced (PIE) dan DropTail. Pengukuran kualitas dinilai dengan menggunakan metode perhitungan Mean Opinion Score (MOS). Penilaian terbagi menjadi dua yaitu secara subjektif dan objektif. Secara subjektif, nilai MOS didapatkan dengan mendengarkan langsung kualitas suara. Secara Objektif, nilai MOS didapatkan dengan perhitungan R-Factor. Hasil pengujian perbandingan nilai Mean Opinion Score (MOS) baik secara subjektif maupun objektif menunjukan bahwa kualitas VoIP dengan algoritma Proportional Integral Controller Enhanced (PIE) lebih baik daripada DropTail. Pada parameter throughput, packet loss, maupun delay PIE lebih juga lebih baik daripada Droptail. Ini mengindikasikan implementasi algoritma PIE terhadap layanan VoIP lebih baik daripada Droptail
Comparative Analysis of QoE Multipath TCP Congestion Control LIA, CUBIC, and WVEGAS on Video Streaming Siti Amatullah Karimah; Fiqqih Maulana Susanto; Aji G. Putrada
International Journal on Information and Communication Technology (IJoICT) Vol. 7 No. 1 (2021): June 2021
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v7i1.534

Abstract

Transmission Control Protocol (TCP) is a type of protocol that allows a collection of computers to communicate and exchange data within a network. Nowadays electronic devices such as tablets, personal computers and smartphones can use more than one network at the same time, but this is not supported by the characteristics of TCP which can only use one path on the network. To solve this condition there are several new generations of standardized network protocols. Multipath TCP is a development of TCP, Multipath which is a new generation network protocol that allows traffic to use multiple paths in the network. In addition to being able to use multiple paths on multipath TCP, there are several congestion control algorithms including LIA, CUBIC and WVEGAS congestion control algorithms. Tests conducted in this study were to compare the performance of congestion control LIA, CUBIC and WVEGAS to improve the quality of video streaming. From the test results, CUBIC is better than WVEGAS and LIA because the QoS and QoE video streaming test for CUBIC in all testing environment has better results than others.
Perbandingan Mean Opinion Score (MOS) dari VoIP menggunakan Controlled Delay (CoDel) & DropTail Syafwan Almadani Azra; Aji Gautama Putrada Satwiko; Siti Amatullah Karimah
eProceedings of Engineering Vol 5, No 3 (2018): Desember 2018
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Voice over Internet Protocol (VoIP) merupakan sebuah teknologi yang memungkinkan terjadi komunikasi jarak jauh dengan memanfaatkan jaringan internet sebagai penghubung. Perkembangan VoIP saat ini sangat lah pesat karena trend komunikasi saat ini dikuasai oleh smartphone. Hal tersebut mengakibatkan terjadinya congestion pada jaringan seiring dengan meningkatnya penggunaan layanan VoIP pada smartphone. Permasalahan ini dapat diatasi dengan menerapkan mekanisme antrian pada layanan VoIP dalam mengatasi antrian paket data. Mekanisme antrian ini disebut sebagai Active Queue Management (AQM). Active Queue Management (AQM) menyediakan berbagai macam mekanisme antrian seperti Controlling Delay (CoDel) dan DropTail yang bertujuan untuk mengurangi terjadinya congestion. Dalam penelitian ini diimplementasikan dan dianalisis kualitas layanan VoIP dengan menerapkan Controlled Delay (CoDel) dan DropTail berdasarkan perhitungan delay, throughput, packet loss, dan Mean Opinion Score (MOS) yang didapatkan. Hasil pengujian menunjukan performansi algoritma CoDel lebih baik jika dilihat dari nilai delay dan throughput yang didapat, sedangkan algoritma Droptail secara meyakinkan lebih baik dalam penanganan packet loss. Jika dilihat dari perbandingan nilai MOS, algoritma DropTail lebih baik dari algoritma CoDel secara subjektif ataupun secara objektif. Ini mengindikasikan implementasi algoritma CoDel terhadap layanan VoIP masih lebih buruk daripada DropTail Kata kunci : VoIP, AQM, CoDel, DropTail, MOS, congestion Abstract Voice over Internet Protocol (VoIP) is a technology that allows remote communication occurs by utilizing the internet as a conduit. Development of VoIP is currently very rapidly because the communication trend is currently controlled by a smartphone. This led to congestion on the network along with the increasing use of VoIP services on Smartphones. This problem can be overcome by implementing mechanisms of queue on VoIP services in addressing data packet queue. This queue mechanism referred to as the Active Queue Management (AQM). Active Queue Management (AQM) provides a variety of mechanisms such as Controlling queue Delay (CoDel) and DropTail aimed at reducing the occurrence of congestion. In this study are implemented and analyzed the quality of VoIP services by applying Controlled Delay (CoDel) and DropTail calculation based on delay, throughput, packet loss, and Mean Opinion Score (MOS) obtained. The test results show the performance of the algorithm CoDel better if viewed from the value of the delay and throughput obtained, while the algorithm Droptail conclusively better in handling packet loss. If seen from a comparison of the value of the MOS, DropTail algorithm better than algorithms CoDel subjectively or objectively. This indicates the algorithm implementation CoDel against VoIP service is still worse than a DropTail Keywords: VoIP, AQM, CoDel, DropTail, MOS, congestion
Secret Handshake Pada Tuas Pintu Dengan Limit Switch Menggunakan Metode Klasifikasi Naïve Bayes Yahya Ermaya; Aji Gautama Putrada; Siti Amatullah Karimah
eProceedings of Engineering Vol 6, No 1 (2019): April 2019
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Seiring berkembangnya ilmu pengetahuan, sudah banyak cara untuk membobol kunci pintu rumah tradisional. Dengan ini, dibutuhkan kunci pintu baru untuk mengamankan rumah. Dalam penelitian ini dirancang kunci pintu baru berupa smart lock yang bernama secret handshake dengan menggunakan pergerakan tuas pintu sebagai password untuk membuka kunci pintu. Secret handshake menggunakan sensor limit switch dan metode klasifikasi naïve bayes untuk mengklasifikasi data yang dihasilkan oleh limit switch. Metode Naïve Bayes dipilih karena hanya membutuhkan data training dengan jumlah yang kecil. Sistem bekerja dengan membaca sensor limit switch lalu dikirimkan ke matlab melalui thingspeak untuk diproses menggunakan metode klasifikasi naïve bayes untuk menghasilkan nilai prediksi kebenaran password yang dimasukkan. Hasil penelitian yang dilakukan diketahui metode klasifikasi naïve bayes dapat membedakan password yang benar dan password yang salah dengan tingkat akurasi sebesar 93.33%. Kata Kunci: smart lock, limit switch, secret handshake. Abstract Along with the development of knowledge, there are a lot of ways to break traditional house-key. Therefore, new house-key is needed to protect the house. In this research, new house-key with smart lock system named secret handshake is designed, using door handle movements as a password to open the house-key. Limit switch and naive bayes classification method are used by secret handshake system to classify the data from limit switch movements. Naive bayes method is choosen because it is only use small amounts of training data. Secret handshake system works when the limit switch read the movements and then the data sent to matlab through thingspeak to be processed using naive bayes classifier method and get the true password prediction values that has been input. The result showed that naive bayes cassifier method can differentiate between the true and wrong password with 93.33% accuracy. Keywords: smart lock, limit switch, secret handshake.
Analisis Performansi Proses Scaling Pada Kubernetes Dan Docker Swarm Menggunakan Metode Horizontal Scaler Bayu Arifat Firdaus; Vera Suryani; Siti Amatullah Karimah
eProceedings of Engineering Vol 7, No 2 (2020): Agustus 2020
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Container merupakan teknologi yang belakangan ini banyak digunakan karena adanya fitur-fitur tambahan yang sangat mudah dan nyaman digunakan, khususnya bagi development and operations (dev ops), dengan Container memudahkan system administrator dalam mengelola aplikasi termasuk membangun, memproses dan menjalankan aplikasi pada server Container. Container Orchestration adalah salah satu teknologi Container. Dengan Container Orchestration proses pembuatan maupun penggunaan system tersebut akan semakin mudah tetapi seiring dengan permintaan pengguna yang terlalu banyak sehingga layanan tersebut tidak berjalan maksimal.Oleh karena itu Container Orchestration harus memiliki skalabilitas dan performansi yang bagus. Skalabilitas di perlukan untuk system dapat menyesuaikan kebutuhan dengan permintaan user . Dan performansi di perlukan untuk menjaga kualitas layanan yang diberikan. Dalam penelitian ini membahas Container Orchestration Kubernetes dan Docker Swarm dari sisi skalabilitas dan performansinya. Yang menjadi parameter pembanding antara Kubernetes dan Docker Swarm adalah Load Testing untuk skalabilitas, waktu scaling up dan scaling down untuk performansi . Hasil penelitian menunjukan untuk skalabilitas Kubernetes memakan lebih banyak resource Cpu Utilization yaitu pada 10000 user Kubernetes memakan resource Cpu Utilization dengan rata rata 94,20 % sedangkan pada Docker Swarm dengan rata rata 92,28% di karenakan di dalam Kubernetes sendiri memiliki system yang kompleks terutama komponen komponen khusus seperti API, Etcd, Scheduler ,Controller manager, kubelet,kube-proxy untuk menjalankan Container . Sementara di dalam Docker Swarm hanya memiliki komponen Swarm Manager dan Docker Daemon saja . Untuk Performansi scaling up pada Kubernetes lebih di unggulkan karena penskalaan otomatis sedangkan Docker Swarm penskalaan dilakukan manual tetapi dari segi Load Balancing Docker Swarm lebih cepat yaitu dengan waktu rata rata 55,8 second sementara Kubernetes 61,2 second . Untuk scaling down Docker Swarm di unggulkan dari segi menghapus Container. Di karenakan penghapusan di lakukan manual yaitu dengan waktu rata-rata 11,4 second. Meskipun Kubernetes terlihat lebih lama dalam menghapus tapi di dalam Kubernetes terdapat penghapusan Container otomatis yaitu dengan waktu rata rata 4 minute 49 second. Kata kunci : Container Orchestration, Kubernetes ,DockerSwarm,scaling up dan scaling down Abstract Container is a technology that is widely used lately because of the additional features that are very easy and convenient to use, especially for development and operations (dev ops), with Container making it easy for system administrators to manage applications including building, processing and running applications on Container servers. Container Orchestration is one of Container technology. With Container Orchestration, the process of making and using the system will be easier, but along with too many user requests, the service will not run optimally. Therefore, Container Orchestration must have good scalability and performance. Scalability is needed for the system to match the needs of the user request. And performance is needed to maintain the quality of services provided. In this study, discussing Container Orchestration Kubernetes and Docker Swarm in terms of scalability and performance. The comparison parameters between Kubernetes and Docker Swarm are load testing for scalability, scaling up time and scaling down for performance. The results showed that the scalability of Kubernetes consumed more resources Cpu Utilization, namely in 10000 Kubernetes users consumed resources Cpu Utilization with an average of 94.20%, while at Docker Swarm with an average of 92.28%, because inside Kubernetes itself had complex systems, especially special components such as API , Etcd, Scheduler, Controller manager to run Container. While in the Docker Swarm only has a Swarm Manager and Docker Daemon component only. For scaling up performance in Kubernetes is more favored due to automatic scaling while the Docker Swarm scaling is done manually but in terms of Load Balancing Docker Swarm is faster, with an average time of 55.8 seconds while Kubernetes 61.2 second. For Scaling Down Docker Swarm featured in terms of removing the container. Because the removal is done manually with an average time of 11.4 seconds. Although Kubernetes looks longer to delete but inside Kubernetes there is automatic Container removal, which is on average time 4 minutes 49 seconds..
Model Komputasi Blast Pada Lingkungan Hadoop Devina Adinda Hartono; Setyorini Setyorini; Siti Amatullah Karimah
eProceedings of Engineering Vol 8, No 1 (2021): Februari 2021
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Mencari kemiripan pada sequence DNA, RNA atau protein dalam disiplin ilmu Bioinformatika bermanfaat untuk menemukan hubungan struktur, fungsi dan evolusi antar organisme. BLAST merupakan perangkat analisa kemiripan sequence biologi yang membandingkan satu sequence terhadap kumpulan sequence dalam suatu basis data dengan komputasi dilakukan secara berpasangan untuk semua sequence. Peningkatan koleksi sequence dalam basis data dapat memperpanjang proses pencarian similaritasnya. Hadoop Mapreduce digunakan sebagai framework komputasi yang dapat meningkatkan performa komputasi BLAST karena pada prinsipnya operasi perbandingan berpasangan adalah saling independen sehingga bisa diparalelkan. Tugas Akhir ini mengukur tingkat efisiensi komputasi BLAST dengan memanfaatkan framework hadoop. Hasil penelitian menunjukan Basic Local Alignment Search Tool (BLAST) yang dibangun pada Hadoop berturut-turut terjadi percepatan dan cluster hadoop dengan 3 node 33x lebih cepat dibanding tanpa menggunakan Hadoop. Kata kunci: Bioinformatika, BLAST, Sequence Alignment, Hadoop, Mapreduce Abstract Finds the region of similarity in DNA, RNA or protein sequence on Bioinformaticsis used to find structural, functional and evolutionary relationships between organisms. BLAST is a biological sequence similarity analysis tool that compares one sequence to a collection of sequences in the database with computations are performed in pairs for all sequences. Sequence collection enhancement in the database can extend the similarity search process. Hadoop Mapreduce is used as a computational framework that can improve BLAST computing performance because in principle the pairwise comparison operation is independent so that can be paralleled. This final project measure the potential for BLAST computational efficiency by utilizing the hadoop framework. The results showed that the Basic Local Alignment Search Tool (BLAST) built on was speedup and the Hadoop cluster with 3 nodes was 33 times faster than without using Hadoop. Keywords: Bioinformatics, BLAST, Sequence Alignment, Hadoop, Mapreduce
Analisis Performansi Layanan Web Menggunakan Arsitektur Microservice Dan Monolitik Siti Amatullah Karimah; Haris Hamdani Latif; Sidik Prabowo
Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Vol 4, No 4 (2023): Edisi Oktober
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/kesatria.v4i4.233

Abstract

Container-based virtualization technology is currently popularly used across all cloud platforms and is predicted to continue for the next few years. The use of this container technology will make it easier and save resources used for services. Coupled with the development of the current web architecture which is increasingly being developed and used for commercial purposes, including Microservice and Monolithic. This Microservice architecture divides its services into smaller parts based on functionality. Meanwhile, Monolithic Architecture is referred to as conventional architecture because in it services become a unified whole. For this reason, a test scenario was carried out to determine the performance of the two web architectures. In this study, load testing was carried out with the number of requests 50, 100, 500, and 1000 on Microservice and Monolithic to show scalability. The results show that the Monolithic service is superior with an average CPU usage on AWS of 83% while Microservice is at 99%. CPU in Monolithic Docker Container is 92% while Microservice is 30% for each service. For Memory Usage, Microservice gets an average of 14% while for Monolithic services it is 12%. Response Time was obtained at 1497.31 ms for Microservice and 89.02 ms for Monolithic. In testing the availability by terminating/stopping the service in the Microservice service then it is reactivated and takes 2 seconds, while in the Monolithic service it takes 3 seconds to restore the service. When the service is turned off, the Microservice service can still run normally, only the dead service will experience interference, this is inversely proportional to the Monolithic service which will be completely dead when the service is turned off.
Comparative Analysis of Max-Throughput and Proportional Fair Scheduling Algorithms in 5G Networks St. Nur Hikmah Damayanti; Siti Amatullah Karimah; Setyorini Setyorini
Journal of Computer System and Informatics (JoSYC) Vol 4 No 2 (2023): Februari 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i2.3073

Abstract

Mobile network service use is growing, especially after the Covid-19 pandemic. To improve the quality of mobile network services, 5G comes as a network service ecosystem with low latency, which is 1ms, or about 10 times lower than 4G, making 5G able to provide more efficient access, especially in real-time network utilization. Maximum speed can be obtained by sharing limited bandwidth. The limited amount of available bandwidth causes the need for a Packet Scheduler, which aims to improve the efficiency and fairness of bandwidth usage. This research uses two packet schedulers comparing the Proportional Fair algorithm and the Max-Throughput algorithm using test scenarios for changes in the number of users and user speed. The resulting output value analyzes resource limits such as frequency, power, speed, and time in each scenario to allocate resources so that their use remains efficient with a Quality of Service that remains stable and maintained. In simulation testing using the 5G-air-simulator, the average value obtained in the delay is 1,394 ms, throughput is 0,636, and fairness index is 0,967.
Web-Based Formaldehyde Detection System in Chickens using IOT and Fuzzy Logic Azizurahman Arafah Mufti; Siti Amatullah Karimah, S.T., M.T.; Hilal Hudan Nuha; Endang Rosdiana
International Journal on Information and Communication Technology (IJoICT) Vol. 10 No. 1 (2024): Vol. 10 No.1 June 2024
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v10i1.885

Abstract

Chicken is a widely consumed source of animal protein globally, valued for its high protein content and essential nutrients. Ensuring the freshness of chicken meat is crucial to guarantee its healthiness and prevent harm to consumers. Unfortunately, there are concerns about the use of hazardous substances like formaldehyde by some traders for meat preservation. Formalin, a clear liquid with a pungent odor, is commonly utilized as a food preservative. To address the misuse of formaldehyde in broiler chickens, an innovative solution is proposed involving IoT technology and Fuzzy Logic. The developed formaldehyde detection system employs an ESP8266 microcontroller and a TCS3200 sensor to assess color variations in chicken meat samples mixed with Schiff's reagent. The TCS3200 sensor detects color changes, and the ESP8266 Microcontroller converts measurements into RGB basic colors. Calibration of the sensor yielded a 98.30% relative accuracy at a 3 cm distance. Fuzzy Logic is then applied to determine formaldehyde levels, displayed on an LCD screen. The tool exhibits a 95% reliability for achieving a 0 ppm level, 93% for 40 ppm, 92% for 80 ppm, and 100% for 200 ppm
Performance Analyze of Fog Computing Against Topology Using YAFS Fog Simulator Adiansyah, Naufal Rafi; Karimah, Siti Amatullah; Mugitama, Satria Akbar
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 3 (2023): Article Research Volume 7 Issue 3, July 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i3.12659

Abstract

This research focuses on the analysis of fog computing performance on mesh, star, and ring topologies using the YAFS Fog Simulator. The reason YAFS (Yet Another Fog Simulator) was chosen was based on the consideration that this fog computing simulator, among other things, was designed to analyze topology and load balancing as well as include processing time for data transfer between devices into the fog layer. In addition, YAFS has a better level of time processing accuracy than other fog simulators. There are three test scenarios with additional load which includes 4, 8, and 12 fog nodes in each topology. Each scenario also has an additional load which includes 4, 8, and 12 devices in the form of sensors and actuators, respectively. The experimental results from the three scenarios show that the greater the load from the fog node and equipment, the longer the processing time will be. In addition, the results of the three scenarios also show that the mesh topology has the best time processing accuracy among the three tested topologies.