Claim Missing Document
Check
Articles

Found 35 Documents
Search

Classifying Gender Based on Face Images Using Vision Transformer Tahyudin, Ganjar Gingin; Sulistiyo, Mahmud Dwi; Arzaki, Muhammad; Rachmawati, Ema
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.1923

Abstract

Due to various factors that cause visual alterations in the collected facial images, gender classification based on image processing continues to be a performance challenge for classifier models. The Vision Transformer model is used in this study to suggest a technique for identifying a person’s gender from their face images. This study investigates how well a facial image-based model can distinguish between male and female genders. It also investigates the rarely discussed performance on the variation and complexity of data caused by differences in racial and age groups. We trained on the AFAD dataset and then carried out same-dataset and cross-dataset evaluations, the latter of which considers the UTKFace dataset.  From the experiments and analysis in the same-dataset evaluation, the highest validation accuracy of  happens for the image of size  pixels with eight patches. In comparison, the highest testing accuracy of  occurs for the image of size  pixels with  patches. Moreover, the experiments and analysis in the cross-dataset evaluation show that the model works optimally for the image size  pixels with  patches, with the value of the model’s accuracy, precision, recall, and F1-score being , , , and , respectively. Furthermore, the misclassification analysis shows that the model works optimally in classifying the gender of people between 21-70 years old. The findings of this study can serve as a baseline for conducting further analysis on the effectiveness of gender classifier models considering various physical factors.
Deteksi Penggunaan Masker Wajah Menggunakan YOLOv5 Dawami, Hasbi; Rachmawati, Ema; Sulistiyo, Mahmud Dwi
eProceedings of Engineering Vol. 10 No. 2 (2023): April 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak-Pandemi COVID-19 menyebabkan global krisis kesehatan. Mengenakan masker wajah menjadi salah satu protokol kesehatan yang penting dan diwajibkan oleh pemerintah. Namun, masih banyak masyarakat yang enggan mengenakan masker wajah ketika berada di ruang publik. Oleh karena itu, diperlukan sistem yang dapat mendeteksi penggunaan masker wajah pada manusia yang bertujuan untuk membantu petugas dalam menegakkan kedisiplinan masyarakat dalam rangka menerapkan salah satu protokol kesehatan tersebut. Sistem tersebut dirancang dengan model object detection yang akurat dan efisien untuk mendeteksi penggunaan masker wajah pada manusia. Tugas akhir ini membahas bagaimana membangun sistem untuk mendeteksi masker pada wajah menggunakan metode YOLOv5 menggunakan dataset face mask detection yang asli dan yang telah di augmentasi serta berbagai nilai IoU threshold mulai dari 0,1; 0,2; 0,3; 0,5 dan 0,7. YOLOv5 merupakan versi terbaru dari YOLO sehingga memiliki akurasi yang tinggi, kemampuan mendeteksi small object, serta running speed yang cepat. Hasil terbaik jika menggunakan dataset face mask detection original didapatkan dengan nilai IoU threshold sebesar 0,3 yang memilki nilai mAP pada saat testing semua kelas sebesar 0,876. Jika menggunakan dataset face mask detection yang diaugmentasi hasil terbaik didapatkan dengan nilai IoU threshold sebesar 0,5 yang memiliki nilai mAP pada saat testing untuk semua kelas sebesar 0,849.Kata kunci- object detection, you only look once, akurasi, small object, running speed,IoU threshold 
Segementasi Optik Disc dan Cup untuk Membantu Pendeteksian Glaukoma Menggunakan Segmentation Transformer Akbar, M Raehan; Rachmawati, Ema; Sulistiyo, Mahmud Dwi
eProceedings of Engineering Vol. 10 No. 2 (2023): April 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak-Glaukoma kondisi di mana saraf optik yang menghubungkan mata ke otak menjadi rusak. Glaukoma dapat menyebabkan kehilangan kemampuan penglihatan jika tidak didiagnosis dan ditangani secepat mungkin. Salah satu metode yang dilibatkan dalam mendiagnosis glaukoma menghitung rasio antara optik disc dan cup citra fundus mata. Untuk menghitung rasio antara disc dan cup citra fundus mata, diperlukan sebuah proses segmentasi citra fundus mata untuk dapat mensegmentasikan bagian disc dan cup nya. Saat ini tugas segmentasi dapat dilakukan menggunakan algoritma visi komputer modern. Transformer sendiri telah menjadi salah satu state art of model yang sering diterapkan studi kasus yang menggunakan deep learning karena performanya yang mampu menandingi Convolutinal Neural Networks (CNN). Tugas akhir ini akan membahas implementasi Transformer studi kasus segmentasi disc dan cup citra fundus mata menggunakan metode Segmentation Transformer (SETR) dengan dataset REFUGE dan DRISHTI-GS1. Hasil dice coefficients score dengan menggunakan Cross Dataset Evaluation berhasil mendapatkan skor 86 persen untuk bagian disc dan 78 persen untuk bagian cup.Kata kunci - glaukoma, disc, cup, segmentasi, segmentation transformers, transformers.
PSO-Enhanced ensemble techniques for pandemic prediction and feature importance analysis Pane, Syafrial Fachri; Sulistiyo, Mahmud Dwi; Gozali, Alfian Akbar; Adiwijaya, Adiwijaya
International Journal of Advances in Intelligent Informatics Vol 11, No 4 (2025): November 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i4.2091

Abstract

During the pandemic crisis that hit after 2020, Indonesia, like many other countries, faced tremendous challenges in areas such as health, economy, and mobility. An in-depth understanding of the dynamics and changes in these areas is essential to address the impacts of the pandemic. This research is an attempt to deeply analyze the impact of the pandemic and the most effective forecasting methods based on data and phenomena. Indonesia, with its growing economy and constantly adapting health system, faces conventional economic impacts, while its health system response tries to keep up with urgent needs driven by the spread of the virus. In the context of mobility, changes in how people move and interact significantly affect virus transmission. Modeling a pandemic event with all its complexities is not an easy task. Even more so, in finding the right method for prediction, ensemble techniques such as stacking and regression voting are emerging as promising approaches. However, deep learning and particle swarm optimization (PSO) techniques offer new innovations. The results of this study show that the ensemble vote provides the best performance in predicting confirmed positive cases and mortality based on factors of health, economic and population mobility in Indonesia. Through feature importance analysis using MDI and Tree SHAP, we conclude that factors such as active cases, the number of vaccinations, and economic indicators, such as close IDR and close IHSG, have a significant influence on the growth of confirmed positive cases. Meanwhile, recovery factors and vaccination number play an important role in the growth of the number of death cases. This study confirms that a multivariate approach that considers health, economy and mobility is the key to understanding and responding more effectively to the pandemic in Indonesia.
Investigating Shallow Learning Methods for Optical Character Recognition of Indonesia’s Nusantara Scripts Sulistiyo, Mahmud Dwi; Putrada, Aji Gautama; Ihsan, Aditya Firman; Yunanto, Prasti Eko; Richasdy, Donny; Sailellah, Hassan Rizky Putra; Sabrina Adinda Sari
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 6 (2025): December 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i6.6648

Abstract

Indonesia has numerous regional scripts—or so-called Nusantara scripts—and recognizing them is important to preserve Indonesia's cultural heritage. The advances of AI and computer vision technologies make it possible for a machine to optically read the handwritten scripts through the Optical Character Recognition (OCR) technique. However, collecting some of the top OCR solutions and comprehensively investigating their performances on the Nusantara scripts is currently lacking. This study investigates and evaluates some shallow learning-based methods on our newly introduced datasets, consisting of more than 38,000-character images across 80 letter classes in total; here, we focus on three regional scripts: Javanese, Sundanese, and Balinese. The methods include Random Forest, SVM, Logistic Regression, and Gaussian Naïve Bayes, as well as boosting techniques such as XGBoost, Light GBM, and CatBoost. A 5-fold cross-validation approach assessed model performance based on accuracy, precision, recall, and F1-score. Based on the experimental results, the methods demonstrated their competitiveness in reaching the best models for scripts; in particular, XGBoost, Light GBM, and Random Forest-Gini were the winners for Javanese, Sundanese, and Balinese scripts, respectively. These findings demonstrate the effectiveness of ensemble learning methods for diverse handwritten scripts. Comparative analysis to prior deep learning studies is also discussed in this paper. In addition, this research also contributes to preserving Indonesian traditional scripts, as well as offers insights for future regional OCR in other countries.