Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : FLUIDA

Effect of Diameter on Steam Pressure Sootblower to Eliminate Low Potential Slagging and Fouling Abigail Qutratuain Prabaswara; Ika Yuliyani; Sri Widarti
Fluida Vol 16 No sp1 (2023): FLUIDA x IRWNS Special Edition
Publisher : Department of Chemical Engineering, Politeknik Negeri Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/fluida.v16isp1.5594

Abstract

The combustion process in pulverized coal boilers utilizes coal fuel, which produces ash and heat. Ash from combustion process will be deposited and adhere to pipes, known as slagging and fouling. Cleaning of slagging and fouling is done using a sootblower by flowing pressurized fluid to generate a jet nozzle force, which can remove the slagging and fouling adhering to the pipes in the superheater. Based on testing of parameters, ash fusion temperature is 1415.42 oC, and silica ratio is 79.55%, indicating a low potential for slagging. For fouling testing yielded an index of 0.089, indicating a low potential for fouling. The existing retractable sootblower operates using superheated steam with a pressure of 70-75 bar. In the design of low-pressure sootblower, flow is derived from intermediate pressure turbine by modifying feed tube, lance tube, and sootblower nozzle. The design results in a feed tube diameter of 101.65 mm, a lance tube diameter of 114.3 mm, an inlet nozzle diameter of 21.1 mm, a throat nozzle diameter of 13.97 mm, and an outlet nozzle diameter of 41.02 mm, with a Mach number output of 2.09 and a total jet force of 2023.9 N.
Analisa Perancangan Nozzle Low-Pressure Sootblower Tipe Long Retractable Pada Boiler PLTU Subcritical Yuliyani, Ika; Ramadan, Ilzam Multazam
Fluida Vol. 18 No. 1 (2025): FLUIDA
Publisher : Department of Chemical Engineering, Politeknik Negeri Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/fluida.v18i1.5502

Abstract

Conventional high-pressure sootblowers (148 bar, 492°C) in coal-fired power plants frequently suffer from mechanical failures (e.g., valve leaks, pipe erosion) and excessive energy consumption due to pressure drops. These issues necessitate an alternative solution to improve boiler efficiency and reduce maintenance costs. This study designs a retractable low-pressure nozzle utilizing intermediate-pressure turbine steam (12.13 bar, 395°C) to address these challenges. Through the development of a divergent full-cone nozzle (throat/exit diameters: 15.45/35.87 mm) and verification via Computational Fluid Dynamics (CFD) simulations, the nozzle achieved supersonic flow characteristics (Mach 1.2–1.7) with a steam mass fraction of 99.99%, while reducing pressure drop by 67% (4.77 bar compared to the conventional 14.8 bar). Field tests conducted at PLTU Banten 2 Labuan confirmed an effective cleaning area of 1.028 m² at a distance of 2.135 meters, demonstrating superior performance compared to traditional systems. Furthermore, the system achieved potential annual savings of approximately $3,981 per unit through reduced energy and maintenance costs. The results demonstrate that this low-pressure nozzle design not only mitigates slagging and fouling with lower operational risks but also offers a sustainable, energy-efficient, and economically viable alternative for improving the performance and reliability of subcritical coal-fired boilers.