Claim Missing Document
Check
Articles

Found 16 Documents
Search

PENAKSIR RASIO REGRESI LINEAR SEDERHANA UNTUK RATA-RATA POPULASI MENGGUNAKANKARAKTER TAMBAHAN Astari Rahmadita; Harison '; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Estimators discussed here are three regression ratio estimators of population mean Y using information on two auxiliary variables Xdan Z under simple random sampling without replacement. They are proposed bySingh, Upadhyaya and Premchandra [4] which is a review of the article “An Improved Version of Regression Ratio Estimator with Two Auxiliary Variables in Sample Surveys.” All estimatorsare biased. The efficient estimator is one with the smallest Mean Square Error (MSE), determined by comparing each type of estimator.
PENAKSIR RASIO DAN PRODUK EKSPONENSIAL YANG EFISIEN UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA Mega Elysmayanti; Firdaus '; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Estimators discussed here are three estimators for estimating population variance in simple random sampling without replacement, i.e. exponential ratio estimator using variance of auxiliary variable, and exponential ratio and product estimators using mean of auxiliary variable. This work is a review of article written by Asghar et al. [Revista Colombiana de Estadistica, 37 (2014): 213-224]. These estimators are all biased and mean square error (MSE) of each estimator can be obtained. Furthermore, these MSE are compared to each other. The most efficient estimator is the one which has the smallest MSE. An example is given to show the efficiency of the estimator.
PENAKSIR RASIO DAN PRODUK EKSPONENSIAL YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SISTEMATIK Fanny Wirastuti; Bustami '; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The estimators discussed in this paper are the ratio exponential estimator, the product exponential estimator and the combination of ratio exponential estimator and product exponential estimator on systematic random sampling, which is a review and an expansion correction from the article of Singh, et. al. [Journal of Modern Applied Statistical Methods, 10: 424-435]. Each estimator is a biased estimator and the mean square errors are determined. Estimator with the smallest mean square error is the most efficient estimator. An example is given at the end of the discussion.
PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA Asri Elvita; Arisman Adnan; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 1 (2014): Wisuda Februari 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper discusses three ratio estimators for population variance in simple randomsampling using quartiles of the auxiliary variable given by Subramani andKumarapandiyan [International Journal of Statistics and Applications., 2(5): 67-72].The estimators discussed are the ratio estimator using the first quartile, the third quartileand the inter-quartile range. These three estimators discussed are biased estimators.Furthermore, their mean square errors are compared to show which one is the mostefficient estimator. This comparison shows that the ratio estimator using inter-quartilerange is the most efficient estimator.
PENAKSIR RASIO-CUM-DUAL UNTUK VARIANSI POPULASI PADA SAMPLING ACAK SEDERHANA Siska Yuliati; Arisman Adnan; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article discusses three estimators for estimating population variance in simple random sampling i.e. ratio estimator, dual ratio estimator and ratio cum dual estimator which is a review of the article of Yadav and Kadilar [Journal of Reliability and Statistical Studies, 6 (2013): 29-34]. These there estimators are all biased, and MSE (mean square error) of each estimator can be obtained. Furthermore, these MSE are compared to each other. An example is given to show the efficiencies of estimators.
IMPUTASI MENGGUNAKAN PENAKSIR REGRESI UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING GANDA Bernad Fundika Marpaung; Rustam Efendi; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Estimators discussed in this paper are estimators that estimate a population mean with imputation method under double sampling design using regression estimators. Imputation methodsare used to estimate the missing data. This is a review of an article written by Thakur et. al [Journal of Reliability and Statistical Studies, 5(2): 21- 31]. There are three estimators that discussed and each of them is an unbiased estimator. The minimum variance of each estimator is compared in order to decide the most efficient estimator.
PENAKSIR PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA MENGGUNAKAN BEBERAPA PARAMETER Icha Yulia; Arisman Adnan; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article is a review of the study conducted by Kadilar [Journal of Statistical Planning and Inference, 139:2552-2558]. This article introduces three product estimators for the population mean in stratified random sampling using coefficient of variation, standard deviation, and coefficient of kurtosis. These estimators are biasedestimators.  Then, the mean square errors of each estimator are compared for showing which one is the most efficient estimator. An example is given at the end of the discussion.
PENAKSIR RASIO PROPORSI YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA Devri Maulana; Arisman Adnan; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this article we review three proportion ratio estimators for the population mean on stratified random sampling, i.e. traditional proportion ratio estimator, proportion ratio estimator  using coefficient of regression, and proportion ratio estimator  usingcoefficient of regression and curtosis as discussed by Singh and Audu [5]. The three estimators  are  biased  estimators,  then  the  mean  square  error  of  each  estimator  is determined.  Furthermore, these mean square errors are compared to each other. This comparison shows that the proportion ratio estimator using coefficient of regression and curtosis more efficient than other estimators. 
PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Edi Jamilun; Harison '; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 1, No 2 (2014): Wisuda Oktober 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper discusses three ratio regression linear estimators by Singh, Upadhyaya  and Premchandra for population mean Y using two auxiliary variables X and Z on simple random sampling which is a review of article “An Improved Version of Regression Ratio Estimator with Two auxiliary Variables in Sample Surveys”. The three estimators are biased then the minimum of the (MSE) is determined. Furthermore, their MSE are compared to each other. This comparison shows that the estimator with the minimum MSE is the most efficiensi estimator.  
PENAKSIR RASIO REGRESI UNTUK RATA-RATA POPULASI MENGGUNAKAN MINIMUM DAN MAKSIMUM VARIABEL TAMBAHAN Iis Novia; Firdaus '; Haposan Sirait
Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam Vol 2, No 1 (2015): Wisuda Februari 2015
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This article studies three type of regression ratio estimators for the population mean on simple random sampling using minimum and maximum auxiliary variables. This study is a review from the article of Singh et. al. [Statistics in Transition, 10 (2009): 85-100]. Then, the mean square error of this three estimators are compared. Estimator with the smallest mean square error is the most efficient estimator. An example is given at the end of the discussion.This article studies three type of regression ratio estimators for the population mean on simple random sampling using minimum and maximum auxiliary variables. This study is a review from the article of Singh et. al. [Statistics in Transition, 10 (2009): 85-100]. Then, the mean square error of this three estimators are compared. Estimator with the smallest mean square error is the most efficient estimator. An example is given at the end of the discussion.This article studies three type of regression ratio estimators for the population mean on simple random sampling using minimum and maximum auxiliary variables. This study is a review from the article of Singh et. al. [Statistics in Transition, 10 (2009): 85-100]. Then, the mean square error of this three estimators are compared. Estimator with the smallest mean square error is the most efficient estimator. An example is given at the end of the discussion.