Putu Kartika Dewi
Universitas Pendidikan Ganesha

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

PERSEPSI MAHASISWA MENGENAI PERKULIAHAN DARING KALKULUS DIFERENSIAL DI MASA PANDEMI COVID-19 Putu Kartika Dewi; Desak Made Ristia Kartika; Gusti Ayu Mahayukti; Gusti Ayu Made Arnaputri
Jurnal Pendidikan Matematika Undiksha Vol. 12 No. 1 (2021): Jurnal Pendidikan Matematika Undiksha
Publisher : Undiksha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jjpm.v12i1.33466

Abstract

Pembelajaran daring merupakan solusi pelaksanaan pendidikan di masa pandemi Covid-19 untuk mencegah penyebaran virus Corona baru. Tujuan penelitian ini adalah untuk menganalisis persepsi mahasiswa terhadap pembelajaran daring pada mata kuliah kalkulus diferensial pada masa pandemi Covid-19. Hal ini penting untuk dijadikan pertimbangan dalam mempersiapkan pembelajaran daring di masa yang akan datang. Responden penelitian ini adalah 97 mahasiswa S1 Pendidikan Matematika Universitas Pendidikan Ganesha tahun ajaran 2021/2020. Data dikumpulkan dengan kuisioner, wawancara, observasi, dan dokumentasi perkuliahan. Data dianlisis secara deskriptif kualitatif. Hasil penelitian menunjukkan bahwa gaya belajar sebagian besar mahasiswa adalah audio visual, oleh karena itu pembelajaran dengan video conference lebih diminati dibandingkan dengan percakapan grup Whatsapp. Kendala utama dalam pelaksanaan pembelajaran daring adalah buruknya koneksi internet. Dalam kondisi demikian, pembelajaran dengan percakapan grup Whatsapp merupakan alternatif yang baik. Untuk pelaksanaan pembelajaran daring ke depannya, mahasiswa menyarankan dosen untuk memperbanyak video pembelajaran, agar mahasiswa dapat menyimak penjelasan materi secara berulang-ulang.
Pengaruh Pembelajaran Berbasis Masalah dengan Penilaian Diri terhadap Efikasi Diri dan Hasil Belajar Mahasiswa Gusti Ayu Mahayukti; Putu Kartika Dewi; I Gusti Nyoman Yudi Hartawan
ANARGYA: Jurnal Ilmiah Pendidikan Matematika Vol 3, No 2 (2020)
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/anargya.v3i2.5069

Abstract

The aim of this research was studying whether problem based learning with self assestment affect student self efication and their learning outcome. The population of this research is student of mathematics education department, Sciences Fakulty of Undiksha academic year 2019/2020. The post test only control group design was used for this experimental design. The questioner and test were used gahthering the data, which valid. It’s data the analyzed by using MANOVA. The research showed that silmutaneously there weren’t deference self efication and leaning outcome of differencial calculus between student who learned by problem based learning with self assestment and who learned by conventional learning. But, the analyzed of student worksheet was showed that 83.43% failed in solving HOTS problem in expereiment group, and the other group failed 83.41%. In addition, the results of the open questionnaires related to the use of PBM with self-assessment showed positive results, namely that 87.88% of students said they were happy with PBM with self-assessment, and only 12.12% stated that they were not happy because they had not been able to do their own assessments.
ANALISIS KESALAHAN MAHASISWA DALAM MENGERJAKAN SOAL KALKULUS INTEGRAL DALAM PEMBELAJARAN DARING Gusti Ayu Mahayukti; Putu Kartika Dewi; I Gusti Nyoman Yudi Hartawan; Padrul Jana
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 11, No 3 (2022)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (876.593 KB) | DOI: 10.24127/ajpm.v11i3.5036

Abstract

Tujuan penelitian ini adalah untuk menganalisis kesalahan mahasiswa dalam mengerjakan soal kalkulus integral. Penelitian ini merupakan penelitian deskriptif kualitatif. Subyek penelitian adalah 10 mahasiswa semester 2 prodi Matematika Undiksha tahun akademik 2020/2021 yang rerata skor ujian tengah semester dan ujian akhir semester kurang dari 40. Instrumen yang digunakan adalah peneliti sebagai instrumen utama, sedangkan soal tes kalkulus integral, dan pedoman wawancara sebagai instrumen pendukung. Data dianalisis melalui tahapan reduksi data, penyajian data dan penarikan kesimpulan. Temuan penelitian menunjukkan ada 50% mahasiswa membuat kesalahan tipe careless errors (Ca), 60% tipe concept errors (Co), 70% tipe application errors (Ap) dan 60% tipe test taking errors (Te). Faktor-faktor yang menyebabkan mahasiswa melakukan kesalahan adalah kurang memahami konsep, bingung memilih teknik integrasi, dan kurang memahami soal aplikasi.
The Modular Irregularity Strength of C_n⊙mK_1 Putu Kartika Dewi
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 4, No 2 (2022)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v4i2.26935

Abstract

Let G(V, E) be a graph with order n with no component of order 2. An edge k-labeling α: E(G) →{1,2,…,k} is called a modular irregular k-labeling of graph G if the corresponding modular weight function wt_ α:V(G) → Z_n defined by wt_ α(x) =Ʃ_(xyϵE(G)) α(xy) is bijective. The value wt_α(x) is called the modular weight of vertex x. Minimum k such that G has a modular irregular k-labeling is called the modular irregularity strength of graph G. In this paper, we define a modular irregular labeling on C_n⊙mK_1. Furthermore, we determine the modular irregularity strength of C_n⊙mK_1.Keywords: corona product; cycle; empty graph; modular irregular labeling; modular irregularity strength. AbstrakDiberikan graf G(V, E) dengan orde n dengan tidak ada komponen yang berorde 2. Sebuah pelabelan-k sisi α: E(G) →{1,2,…,k} disebut pelabelan-k tak teratur modular pada graf G jika fungsi bobot modularnya wt_ α:V(G) → Z_n dengan wt_ α(x) =Ʃ_(xyϵE(G)) α(xy) merupakan fungsi bijektif. Nilai wt_α(x) disebut bobot modular dari simpul x. Minimum dari k sehingga G mempunyai pelabelan-k tak teratur modular disebut dengan kekuatan ketakteraturan modular dari graf G. Pada tulisan ini, didefinisikan pelabelan tak teratur modular pada C_n⊙mK_1. Lebih lanjut, ditentukan kekuatan ketakteraturan modular dari C_n⊙mK_1.Kata Kunci: hasil kali korona; lingkaran, graf kosong; pelabelan tak teratur modular; kekuatan ketakteraturan modular.
Evaluation of the Implementation of the Discovery Learning Model in Learning Mathematics in Deaf Special Junior High Schools Gst Ayu Mahayukti; Putu Kartika Dewi
Indonesian Journal Of Educational Research and Review Vol. 5 No. 3: October 2022
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/ijerr.v5i3.58626

Abstract

Learning mathematics at SMPLB is similar to normal schools in general. The difference is only in the substance of the material and the way the teacher teaches the material in class, where the interaction is carried out using sign language, hand gestures, and emphasis on lip movements which is called total communication. This study analyzed the effectiveness of implementing the discovery learning model in learning mathematics in deaf special schools (SLB). This research is included in the type of evaluation study research. The sample of this study was a mathematics teacher and deaf SMPLB students in grades seven and eight who were taken using a cluster random sampling technique. The number of teachers involved is 3, and the number of students is 18—data collection methods used in questionnaires, interviews, and documentation. The data analysis technique used is quantitative descriptive using the Z-score formula. The results showed that implementing the discovery learning model in learning mathematics in SMPLB for deaf students was classified as less effective. The context variable had a positive score, the input score was negative, the process variable had a negative score, and the product variable had a negative score. The teacher is classified as effective, the context is positive, the input is positive, the process is negative, and the product is positive. The study findings showed that there were as many Z scores with positive signs as negative ones, so the results were equal to zero. Then a positive score was given because Z was closer to the positive score. It happened because the number of research samples was even. Evaluation of implementing the discovery learning model in learning mathematics during a pandemic at SMPLB B for teachers showed that the results were classified as effective.
Optimalisasi Penggunaan Liveworksheet untuk Meningkatkan Kemampuan Berpikir Kritis Siswa pada Materi Bilangan Bulat Made Radheva Ranindita; Putu Kartika Dewi; Gusti Ayu Mahayukti
Didactical Mathematics Vol. 6 No. 1 (2024): April 2024
Publisher : Program Studi Pendidikan Matematika, Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/dm.v6i1.8981

Abstract

Penelitian ini bertujuan untuk mengetahui karakteristik, kelayakan, kepraktisan dan efektivitas LKPD elektronik melalui liveworksheet untuk meningkatkan kemampuan berpikir kritis pada materi bilangan bulat kelas VII SMP. Penelitian ini menggunakan model pengembangan ADDIE, tetapi hanya sampai tahap development. Subjek pada kajian ini ialah 2 ahli materi, 2 ahli media, 2 guru matematika dan siswa sebanyak 7 orang untuk uji coba kelompok kecil. Media LKPD elektronik yang dikembangkan sudah melalui uji kelayakan dengan rata-rata skor totalnya adalah 4,62 yang termasuk kategori sangat layak, uji kepraktisan dengan rata-rata persentase dari angket respon guru dan angket respon peserta didik adalah 93,65% dan termasuk kategori sangat praktis, dan uji efektivitas dengan nilai N-Gain yakni 0,71 yang termasuk kategori tinggi. Jadi, media LKPD elektronik yang dibuat dalam penelitian ini telah layak, praktis, dan efektif.
Indeks Szeged dan Indeks Padmakar-Ivan pada Graf Nilpoten pada Gelanggang Bilangan Bulat Modulo Orde Prima Berpangkat Muhammad Naoval Husni; I Gede Adhitya Wisnu Wardhana; Putu Kartika Dewi; I Nengah Suparta
Jurnal Matematika, Statistika dan Komputasi Vol. 20 No. 2 (2024): JANUARY 2024
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v20i2.31418

Abstract

Recently, graphs have started to be used to represent a finite ring. Nikmehr and  Khojasteh in the article  defined the nilpotent graph of a ring . Denoted , is a graph with the set of vertices being all the elements in the ring  Two vertices  and  are adjacent if and only if  is nilpotent elements in the ring . Topological index is a field that discusses graph structure based on the degree of each vertex of a graph and the distance between vertices.  In this study, the author will gives the general formula of the Szeged index and Padmakar-Ivan index of the nilpotent graph graph of the modulo ring with prime power order. The result of this research is a general formula for the topological indices of nilpotent graphs of the integer modulo ring, called the Szeged index and the Padmakar-Ivan index.