Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparison Study of Mechanical Properties of Al-Si Alloy with and without Nanoreinforce Iron Oxide (Fe2O3) Cepi Yazirin; Poppy Puspitasari; Muhamad Fatikul Arif
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 3, No 1 (2019)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (852.07 KB) | DOI: 10.17977/um016v3i12019p029

Abstract

Nanoreinforce materials such as ZnO, eggshell, Al2O3, TiO2, and ZrO2 have been shown to improve the mechanical properties of Al-Si alloy. Nanomaterial Fe2O3 has many applications as catalysts reaction in electronic devices, for example, semiconductor materials, paint formulations, lithium rechargeable batteries, and is often applied in industrial fields. It is known that Fe2O3 can be synthesized through the stirring process on machine and method used will involve several steps that relatively take a long time. In this study, Al-Si alloy reinforced by using nanomaterial Fe2O3 which sintered at a temperature of 600°C for 3 hours aimed to improve mechanical and morphological properties of Al-Si alloy. The method used was stir casting, where this method was known as flexible, simple, and economic. The result of reinforcing Al-Si alloy by using nanomaterial Fe2O3 had affected on the hardness level of Al-Si alloys as evidenced by the fracture morphology that was brittle and had a light reflection
Analisis Sifat Mekanik dari Struktur Seluler yang Difabrikasi dengan Printer 3D Abdul Muhyi; Riyan Ferdiyanto; Kardo Rajagukguk; Wahyu S. Sipahutar; Muhamad Fatikul Arif
Journal of Science and Applicative Technology Vol 7 No 1 (2023): Journal of Science and Applicative Technology June Chapter
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LPPM), Institut Teknologi Sumatera, Lampung Selatan, Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35472/jsat.v7i1.370

Abstract

Struktur ringan berbentuk cellular (seluler) atau foam (busa) dalam beberapa tahun terakhir sangat banyak dikembangkan terutama karena perkembangan cepat dari Printer 3D, sehingga desain rumit dapat difabrikasi dengan mudah. Struktur seluler mempunyai rasio kekuatan terhadap massa dan kekakuan yang tinggi, serta dapat diaplikasikan pada struktur ringan dengan ketahanan impak yang tinggi. Dalam tulisan ini, dilakukan uji tekan terhadap enam jenis struktur seluler dengan fraksi volume 10%. Jenis struktur seluler yang divariasikan adalah Cubic, Gyroid, Honeycomb 3D, Rectilinear, Honeycomb, dan Rectilinear 45o. Hasil yang didapat menunjukkan bahwa struktur kompleks jenis Cubic mempunyai kekuatan maksimal terbaik dan juga mempunyai penyerapan energi yang terbaik berdasarkan pengujian yang dilakukan, diikuti dengan struktur Gyroid dan Honeycomb 3D. Struktur yang mempunyai topologi dua dimensi yaitu, Rectilinear 0o, Rectilinear 45o, dan Honeycomb tidak mempunyai kekuatan dan karakteristik penyerapan energi yang baik. Hasil ini dapat digunakan sebagai panduan desain struktur ringan yang mempunyai karakteristik kekuatan dan penyerapan energi mekanik yang tinggi.
THE EFFECT OF VARIATIONS IN CURING TEMPERATURE OF CARBON FIBER/PVC FOAM BOARD SANDWICH COMPOSITES ON BENDING TEST FAILURE ANALYSIS paundra, fajar; Saputra, Rizky; Pujiyulianto, Eko; Arif, Muhamad Fatikul; Muhyi, Abdul
Jurnal Pendidikan Teknik Mesin Vol. 24 No. 1 (2024): June 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/xq8fy218

Abstract

Curing is a method to improve the ability of sandwich composite materials by heating the sandwich composite in an electric oven for a certain time and temperature. This research aims to observe and analyze the effect of curing temperature on bending strength and elastic modulus as well as analyzing the fracture results of sandwich composites. The materials used are polyester resin, 240 gsm twill carbon fiber and PVC foam core with a thickness of 5 mm. The manufacturing method used is vacuum bagging and the curing process is carried out with temperature variations of 70°C, 80°C and without curing for 1 hour. The test carried out is a bending test using the ASTM C393 standard. The maximum bending strength value of the sandwich composite is found at a curing temperature of 80°C, namely 48.35 MPa, while the lowest bending strength value is found in the variation without curing, namely 30.07 MPa. The highest elastic modulus value is also found at a curing temperature of 80°C, namely 67.03 GPa and the lowest elastic modulus value is also found in the variation without curing, namely 33.67 GPa.