Claim Missing Document
Check
Articles

Found 14 Documents
Search

Experimental Study of Cationic-Modified Biopolymer for Increasing the Shear Strength of Sand Ardiana, Andra; Lim, Aswin; Muljana, Henky
Jurnal Teknik Sipil dan Perencanaan Vol 26, No 1 (2024)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jtsp.v26i1.49722

Abstract

The application of biopolymers as a more environmentally friendly alternative to cement has emerged as an interesting research subject.The purpose is to enhance the shear strength of sandy soils. In this article, the selected biopolymer is cationic-modified starch. It is expected that cationic starch will have less water absorption properties since modified starch has cationic groups in place of the OH- groups found in the normal starch. This cationic-modified starch namely Amylofax. Five types of samples are created for this testing, including Sample A is prepared with the composition of  (silica sand + 2% Amylofax T1100 (w/w) + 20% water (w/w))., Sample B consists of (silica sand + 2% Amylofax T2200 (w/w) + 20% water (w/w))., Sample C is comprised of (silica sand + 2% Amylofax T1100 (w/w) + 2% Glucomannan (w/w) + 20% water (w/w)), Sample D consists of (silica sand + 2% Amylofax T2200 (w/w) + 2% Glucomannan (w/w) + 20% water (w/w)), and Sample E includes (Ottawa sand + 2% cement (w/w) + 20% water (w/w)). The samples were tested using a direct shear test apparatus to determine the soil shear strength parameters (c) cohesion and (Ø) internal friction angle. After conducting the tests on the sand samples with the addition of modified starch biopolymer (cationic starch), it was found that the cohesion value was 961kPa, and the internal friction angle was 63°. These results indicate higher shear strength values compared to sand mixed with natural starch.
Sintesis katalis asam heterogen berbasis polivinil alkohol (PVA) dan pemanfaatannya dalam produksi metil ester asam lemak Hartono, Ryan; Muljana, Henky; Sugih, Asaf Kleopas; Oemar, Usman; Atin, Jessica; Ahimsa, Gadmon
Jurnal Rekayasa Proses Vol 17, No 2 (2023)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.84514

Abstract

Sulfonated polyvinyl alcohol is a potential heterogeneous acid catalyst for fatty acid methyl esters (FAME) production. The catalyst (PVA/SSA) was synthesized via an esterification reaction between polyvinyl alcohol (PVA) and sulfosuccinic acid (SSA). This research aimed to study the effect of several process variables, such as the molecular weight (MW) of PVA, washing step with methanol, annealing conditions (time, temperature, and annealing pressure), and drying temperature on the performance of the PVA/SSA catalyst in methanol and free fatty acid (FFA) esterification. The sulfonated PVA catalyst was successfully synthesized, as indicated by the presence of the sulfonate group (SO3) at an absorption band of 1267 cm-1 and the carbonyl group (C=O) at an absorption band of 1628 cm-1 in the FT-IR spectra. The resulting PVA/SSA catalyst shows a good performance, where maximum conversion of the fatty acid esterification reaction can reach 81.9%. In addition, the catalyst can be used for at least four repetitions with a decrease in FAME conversion from the first to the second stage of 28.2% and has relatively stable performance in the second and subsequent reactions (conversion range 49, 1% - 58.8%). The resulting catalyst also has good thermal stability with a first-stage degradation range of 200oC to 290oC, allowing it to be applied in a temperature range suitable to the FAME manufacturing industries requirement.
Sintesis polivinil alkohol tersulfonasi sebagai katalis dalam produksi metil ester: Review Irawan, Maria Gracella; Sugih, Asaf Kleopas; Oemar, Usman; Atin, Jessica; Muljana, Henky
Jurnal Rekayasa Proses Vol 16 No 1 (2022): Volume 16, Number 1, 2022
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.70698

Abstract

Sulfonated polyvinyl alcohol (PVA) can be used as a heterogeneous catalyst in esterification or transesterification reactions during methyl ester production. This catalyst with PVA support has the potential to be used commercially like Amberlyst 46. However, there are several drawbacks in the conventional methods to produce sulfonated PVA compared to Amberlyst 46. In this paper, various processes of sulfonated PVA synthesis will be discussed including the advantages and disadvantages compared to Amberlyst 46. The synthesis of sulfonated PVA catalysts can be carried out using sulfosuccinate acid reagents or other acid reagents that have sulfonic groups that act as the active sites of the catalysts. The use of sulfosuccinate acid as the reagent produces catalysts with better catalytic activity, but the resulting product is not in granule form like Amberlyst 46 and can only be used continuously for seven times. The use of chlorosulfonic acid as the reagent resulted in granular catalysts. However, the catalyst has less catalytic activity and stability, and the reagent has a relatively high environmental impact. For the synthesis performed using sulfuric acid as the reagent, no result regarding catalytic activity has been reported elsewhere. The blending of the catalyst with other polymers resulted in improvements in the thermal stability and mechanical strength of the sulfonated polyvinyl alcohol. After a careful review of the procedures, we propose blending or double cross-linking processes combined with sulfonated PVA synthesis as a promising method to increase the thermal stability and mechanical strength of the catalysts. However, it is necessary to perform further laboratory validations on the catalytic activity of the catalysts produced from the combined method because blending may reduce the acid capacity of the catalyst.
Sintesis katalis asam heterogen berbasis polivinil alkohol (PVA) dan pemanfaatannya dalam produksi metil ester asam lemak Hartono, Ryan; Reinaldo, Nicholas; Muljana, Henky; Sugih, Asaf Kleopas; Oemar, Usman; Atin, Jessica; Ahimsa, Gadmon
Jurnal Rekayasa Proses Vol 17 No 2 (2023): Volume 17, Number 2, 2023
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.84514

Abstract

Polivinil alkohol tersulfonasi merupakan katalis asam heterogen yang potensial untuk produksi metil ester asam lemak (FAME). Katalis (PVA/SSA) disintesis melalui reaksi esterifikasi antara polivinil alkohol (PVA) dan asam sulfosuksinat (SSA). Penelitian ini bertujuan untuk mempelajari pengaruh beberapa variabel proses seperti berat molekul (MW) PVA, tahap pencucian dengan metanol, kondisi annealing (waktu, suhu, dan tekanan annealing), dan suhu pengeringan terhadap kinerja PVA/ Katalis SSA dalam esterifikasi metanol dan asam lemak bebas (FFA). Katalis PVA tersulfonasi berhasil disintesis, ditandai dengan adanya gugus sulfonat (SO3) pada pita serapan 1267 cm-1 dan gugus karbonil (C=O) pada pita serapan 1628 cm-1 pada FT. -Spektrum IR. Katalis PVA/SSA yang dihasilkan menunjukkan kinerja yang baik, dimana konversi maksimum reaksi esterifikasi asam lemak dapat mencapai 81,9%. Selain itu, katalis dapat digunakan minimal empat kali pengulangan dengan penurunan konversi FAME dari tahap pertama ke tahap kedua sebesar 28,2% dan memiliki kinerja yang relatif stabil pada reaksi kedua dan selanjutnya (kisaran konversi 49,1% - 58,8% ). Katalis yang dihasilkan juga memiliki stabilitas termal yang baik dengan kisaran degradasi tahap pertama 200oC hingga 290oC, sehingga memungkinkan untuk diterapkan pada kisaran suhu yang sesuai dengan kebutuhan industri manufaktur FAME.