Claim Missing Document
Check
Articles

Found 5 Documents
Search

TINJAUAN STATUS GIZI SISWA KELAS V SDN 002 PULAU BUSUK KABUPATEN KUANTAN SINGINGI Taslim Taslim; Saripin Saripin; Kristi Agust
Jurnal Online Mahasiswa (JOM) Bidang Keguruan dan Ilmu Pendidikan Vol 4, No 1 (2017): Wisuda Februari 2017
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Keguruan dan Ilmu Pendidikan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRACT, Inuman number of schools in the District, especially the poorer elementary students found a school that has a problem in student nutrition. It is known from the proficiency level of the student body posture. There are students who have a posture small, skinny, thin, tall, and too fat. This may be due to people's attention, parents on the nutritional status of students is very low. Schools rarely perform health activities on the nutritional status of students in the school. The low economic and parents make poor nutritional status of students rnenjadi, because weariness are adequately fed. Therefore, researchers wanted to find out by doing research on the nutritional status of students of SDN 002 Pulau Busuk. This type of research is descriptive with a sample of SDN 002 students in class V of 20 people with a total sampling technique. Data obtained from measurements of height and weight of students to determine the nutritional status of a sample of students. Data were analyzed using descriptive analysis. Based on data analysis is students who have normal nutrition only one person with 5 percentage remaining in the category of underweight weight level with a percentage of 95%. Therefore, based on the average score of the overall nutritional status of primary school students 002 Pulau Busuk District of Inuman categorized Less Good.Keywords : Nutrition Status
IMPLEMENTASI PENGAMANAN BASIS DATA DENGAN TEK-NIK ENKRIPSI KRIPTOGRAFI SIMETRIS Zil Fadli; Taslim Taslim
Jurnal Ilmu Komputer Vol 1 No 1 (2012): Jurnal Ilmu Komputer
Publisher : STMIK Hang Tuah Pekanbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33060/JIK/2012/Vol1.Iss1.6

Abstract

Salah satu aspek penting dari pengolahan data adalah masalah keamanan data dan kerahasiaan data. Data - data yang terdapat dalam suatu sistem pengolahan data diharapkan untuk mengamankan pihak yang tidak berhak tidak dapat mengaksesnya. Untuk bentuk dikembangkan keamanan dan kerahasiaan data dengan melakukan menu password pengenkripsian dengan menggunakan DES yang diharapkan tingkat keamanan data terjamin.
PENERAPAN METODA FUZZY ANALYTICAL HIERARCHY PROCES UNTUK PEMBERIAN BEASISWA (STUDI KASUS FAKULTAS ILMU KOMPUTER UNIVERSITAS LANCANG KUNING) Taslim Taslim; Eko Putra
Jurnal Ilmiah Media Sisfo Vol 10 No 2 (2016): JURNAL ILMIAH MEDIA SISFO
Publisher : LPPM STIKOM Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (630.476 KB)

Abstract

Penelitian ini bertujuan untuk mengimplementasikan Metode Fuzzy Analytical Hierarchy Process dalam aplikasi pendukung keputusan yang berfungsi untuk menentukan mahasiswa yang berhak untuk mendapatkan beasiswa di Fakultas Ilmu Komputer. Hasil dari penelitian yang dilakukan adalah memberikan penilaian terhadap mahasiswa dengan variabel – variabel dan diurutkan dengan metode Fuzzy Analytical Hierarchy Process yang mana data mahasiswa tersebut dimasukkan kedalam database pada saat awal semester satu. Hal ini dimaksudkan agar dapat memberikan kemudahan kepada pihak Fakultas Ilmu Komputer dalam penentuan mahasiswa yang akan mendapat bantuan beasiswa.
PENERAPAN METODA FUZZY ANALYTICAL HIERARCHY PROCES UNTUK PEMBERIAN BEASISWA (STUDI KASUS FAKULTAS ILMU KOMPUTER UNIVERSITAS LANCANG KUNING) Taslim Taslim; Eko Putra
Jurnal Ilmiah Media Sisfo Vol 10 No 2 (2016): JURNAL ILMIAH MEDIA SISFO
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk mengimplementasikan Metode Fuzzy Analytical Hierarchy Process dalam aplikasi pendukung keputusan yang berfungsi untuk menentukan mahasiswa yang berhak untuk mendapatkan beasiswa di Fakultas Ilmu Komputer. Hasil dari penelitian yang dilakukan adalah memberikan penilaian terhadap mahasiswa dengan variabel – variabel dan diurutkan dengan metode Fuzzy Analytical Hierarchy Process yang mana data mahasiswa tersebut dimasukkan kedalam database pada saat awal semester satu. Hal ini dimaksudkan agar dapat memberikan kemudahan kepada pihak Fakultas Ilmu Komputer dalam penentuan mahasiswa yang akan mendapat bantuan beasiswa.
Naive Bayes Optimization with PSO for Predicting ICU Needs for Covid-19 Patients Lusiana Dwi Lestari; Iqbal Harifal; Taslim Taslim; Yogi Yunefri; Susi Handayani; Eka Sabna; Kursiah Warti Ningsih
Sistemasi: Jurnal Sistem Informasi Vol 11, No 3 (2022): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v11i3.2094

Abstract

Covid-19 is a global pandemic that requires a coordinated worldwide response across all national health and healthcare systems. Identifying patients who are at high risk of contracting the Covid-19 virus is important to increase awareness before patients are further infected by the Covid-19 virus which can cause severe respiratory illness that requires special treatment in intensive care units (ICU). This study aims to predict ICU needs in patients infected with the Covid-19 virus. The value results from the prediction of ICU needs are used as a reference for hospitals to meet ICU needs for patients infected with Covid-19 so that they can increase ICU supplies. The prediction will be carried out using the Naïve Bayes algorithm method with optimization using the PSO algorithm. Based on the results of the study, the population size 20 with an accuracy value of the NBC algorithm was 87.03%, population size 40 with an accuracy value of 87.28, population size 60 obtained an accuracy of 87.13%, population size 80 with an accuracy value of 87.16 % and population size 100, the results obtained are 87.26% so that each population has an increase in the accuracy value.