Claim Missing Document
Check
Articles

Found 25 Documents
Search

ANALISIS PERBANDINGAN PERFORMA PEMROGRAMAN SEKUENSIAL DAN PARALEL DENGAN SKEMA UJI MATRIX, FILTER DAN QUICK SORT Griffani Megiyanto Rahmatullah; Andry Fajar Zulkarnain; M. Reza Hidayat
Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM) Vol. 6 No. 1 (2021)
Publisher : Fakultas Teknik Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/jtiulm.v6i1.69

Abstract

Komputasi sekuensial merupakan sebuah proses untuk melakukan pemecahan masalah dengan melakukan setiap langkah secara berurutan. Konsekuensi pemecahan sebuah masalah dengan menggunakan komputasi sekuensial adalah sebuah hasil akan muncul apabila langkah pengerjaan telah dilakukan. Pengembangan teknologi dari komputasi sekuensial adalah kom-putasi paralel yang melibatkan penggunaan sumber daya secara bersamaan. Khusus pada bidang IT, sumber daya tersebut dapat berupa core processor atau juga dimungkinkan untuk melibatkan graphical unit. Skema uji yang dilakukan yaitu ber-fokus pada perbandingan performa komputasi sekuensial dan komputasi paralel. Skema uji tersebut terdiri dari pengujian perkalian matrix, proses filter sebuah gambar, dan proses quick sort. Hasil skema uji 1 menunjukkan bahwa komputasi paralel dapat melakukan perkalian dengan dimensi 2000x2000 dengan hasil berkisar 4x lebih cepat dibandingkan komputasi serial. Berikutnya, hasil skema uji 2 menunjukkan proses filter dapat dilakukan oleh komputasi paralel dengan efisiensi 50% lebih baik menggunakan 4 buah core. Terakhir, hasil skema uji 3 menghasilkan nilai efektivitas tertinggi menggunakan CUDA yaitu berkisar 96% dengan proses quick sort pada data sebesar 32Mb.
Analisis Kemampuan Minyak Isolasi Transformator Daya Merek Unindo Dengan Pengujian Dissolved Gas Analysis dan Breakdown Voltage di Gardu Induk Serpong Christiono; M. Reza Hidayat
EPSILON: Journal of Electrical Engineering and Information Technology Vol 18 No 3 (2020): EPSILON: Journal of Electrical Engineering and Information Technology
Publisher : Department of Electrical Engineering, UNJANI

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The increasing demand for electric energy will always coimcide with increasing equipment performance at electrical substation. Power Transformer is one of the tools that really feels the impact, namely the increasing temperature of it is conductor in the form of transformer windings. That is the reason why the transformer has insulation in it, in the form of cellulose paper and transformer oil. To know the indication of failure on the transformer, we can test one of the transformer insulation, namely transformer oil. By doing the DGA testing and Breakdown Voltage of Transformator Oil Testing. After doing the DGA test by analyzing the testing result using TDCG, Key Gas, Doernenburg Ratio, Rogers Ratio, and Duval Triangle Methods. It can be seen that transformer 1 and 3 have experienced a failure indication in the form of temperature failure (Thermal Fault). It can be seen from the high content of methane and ethane gas. And after testing the voltage of the transformer oil breakdown, it can be seen that the condition of the transformer oil breakdown voltage 1 and 3 in the first test are still in good condition. Contrast with the second test, value of the breakdown voltage from both transformer are very bad. That is because the distance between the time of sampling with the testing is very far away and it causes many contaminans in the transformer oil.
Low Noise Amplifier Dual Stage dengan Metode π-Junction untuk Long Term Evolution (LTE) Atik Charisma; Nahal Widianto; M. Reza Hidayat; Handoko Rusiana Iskandar
TELKA - Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol Vol 8, No 2 (2022): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/telka.v8n2.116-125

Abstract

Long Term Evolution (LTE) merupakan teknologi tanpa kabel yang memerlukan komponen-komponen elektronika untuk mendukung performansinya. Salah satu komponen elektronika tersebut yaitu Low Noise Amplifier (LNA) sebagai penguat di bagian penerima. Penelitian ini merancamg Low Noise Amplifier dengan bantuan software berdasarkan perhitungan. LNA bekerja pada frekuensi 1,8 GHz yang merupakan pita frekuensi LTE. Tahapan perancangan LNA dimulai dari pemilihan transistor, rangkaian DC bias, dan penyesuai impedansi. Transistor ATF 34143 menjadi pilihan untuk LNA karena sesuai dengan spesifikasi yang dibutuhkan. Komponen perancangan LNA untuk rangkaian DC meliputi resistor, kapasitor, dan induktor. Salah satu metode yang digunakan pada rangkaian penyesui impedansi yaitu metode π-junction pada bagian input dan output. Rangkaian penyesuai impedansi menggunakan mikrostrip. Sebuah transitor ditambahkan secara cascade untuk meningkatkan performansi LNA. Paremeter-parameter penting sebagai kinerja LNA yaitu noise figure, faktor kestabilan, dan gain. Hasil simulasi perancangan LNA ini memperoleh nilai noise figure sebesar 0,561 dB, gain 36,463 dB, dan faktor kestabilan 1,785. Parameter hasil perancangan telah memenuhi spesfikasi LNA serta kebutuhan LTE.Long Term Evolution (LTE) is a wireless technology that requires electronic components to support its performance. One of the electronic components is the Low Noise Amplifier (LNA) as an amplifier at the receiver. This study designed a Low Noise Amplifier with the help of software based on calculations. LNA works on the 1.8 GHz frequency which is the LTE frequency band. The LNA design stages start from the selection of transistors, DC bias circuits, and impedance matching. The ATF 34143 transistor is the choice for LNA because it fits the required specifications. LNA design components for DC circuits include resistors, capacitors, and inductors. One of the methods used in impedance matching circuits is the π-junction method on the input and output sections. Impedance adjustment circuit using microstrip. A transistor is added cascade to improve LNA performance. Important parameters as the performance of LNA are noise figure, stability factor, and gain. The simulation results of this LNA design obtain a noise figure value of 0.561 dB, a gain of 36.463 dB, and a stability factor of 1.785. The design parameters have met the LNA specifications and LTE requirements.
Pengaruh Pembebanan Terhadap Efisiensi Transformator Distribusi Di PT. PLN (Persero) UP3 Garut M. Reza Hidayat; Iqbal Fadilah
Sutet Vol 13 No 1 (2023): JURNAL ILMIAH SUTET
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Transformer efficiency is defined as the ratio of the incoming power to the outgoing electric power. Even so the ideal transformer has 100% efficiency, this ideal transformer does not exist, because the energy that goes out is always less than the energy that goes in, meaning that there is energy loss. Load imbalance in an electric power distribution system always occurs and the imbalance is in single-phase loads in low-voltage network subscribers. Due to the load imbalance, a current appears in the neutral of the transformer. Perform analysis and compare efficiency. Analysis of used load capacity is not efficient. Analysis of the results of current and voltage measurements at the substation to obtain efficiency, and transformer losses in day and night conditions using LWBP and WBP methods. In this study, observations were made regarding the transformer efficiency analysis using the Outside Peak Load Time (LWBP) and Peak Load Time (WBP) methods. The LWBP method is carried out during the day for 20 hours, while the WBP method is carried out at night for 4 hours, from 18.00 to 22.00. Then measurements were made at PT. PLN (Persero) UP3 Garut. For the highest percentage of loading which is close to the standard of 80%, namely the afternoon loading at the PDDK substation, which is 50.93%, the load used is 50.93 kVA. The night load at the CITL substation is 77.49%, the load used is 77.49 kVA. For the lowest percentage of loading that deviates from the standard 80%, namely the daytime loading at the SJRK substation, which is 16.32%, the load used is 16.32 kVA. The night load at the SJRK substation is 21.52%, the load used is 21.52 kVA. Based on observations, it is not efficient because the unused load is very large, it is recommended to use a smaller transformer capacity. The highest efficiency in the LWBP method is at the CITK substation 97.87%, the lowest at the PDDK substation 94.55%. The highest efficiency in the WBP method is at SJRK substations 95.5%, the lowest at PDDK substations is 92.1%.
Antena Helix Mode Axial untuk Frekuensi Kerja Radar S-Band M. Reza Hidayat; Aditya Febryana; Nivika Tiffany Somantri; Yussi Perdana Saputera
Jurnal Teknik: Media Pengembangan Ilmu dan Aplikasi Teknik Vol 22 No 1 (2023): Jurnal Teknik - Media Pengembangan Ilmu dan Aplikasi Teknik
Publisher : Fakultas Teknik - Universitas Jenderal Achmad Yani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55893/jt.vol22no1.478

Abstract

This study designed an axial mode helix antenna with a working frequency used of 2.1 GHz, which has a return loss value of < -10 dB and VSWR < 1.3. The simulation was carried out using the CST studio suite 2020 software by designing a helix antenna from the calculation results to optimization of the helix antenna structure, namely the distance between the windings, the number of windings, the diameter of the windings, and the diameter of the ground plane until the simulation results are in accordance with the specifications of the desired parameters. Based on the final results of the return loss parameters and VSWR has met the designed specification standards, from the simulation results of the axial mode helix antenna, the results were obtained, namely at a return loss of -22 dB and at a VSWR value obtained 1.17. The results of the measurement of the axial mode helix antenna obtained the same result at a return loss of -22 dB and at VSWR 1.17 but the frequency value used in the measurement shifted to 2.45 GHz, this is not a problem because the s-band frequency can work from 2 GHz to 4 GHz.