Bean plant is one of the high economic value horticultural commodities widely cultivated in Indonesia. However, its productivity declines due to pest attacks and leaf diseases. Farmers' limitations in accurately identifying disease types also pose obstacles in early mitigation efforts. Therefore, technology-based solutions capable of quickly and accurately detecting plant diseases are needed. This research aims to develop and evaluate the performance of a leaf disease detection model for bean plants using the You Only Look Once version 8 (YOLOv8) algorithm with a transfer learning approach. The dataset used consists of 1,037 images of bean leaves, classified into three categories: angular leaf spots, leaf rust, and healthy leaves. Data were obtained from two sources, namely field documentation in Sindang Village, Sukabumi Regency, and an open repository on GitHub. The dataset was divided into training data (70%), validation (20%), and testing (10%). The model was trained using the YOLOv8s architecture for 30 epochs and achieved a detection accuracy of 85%. Performance evaluation was conducted using precision, recall, and mean average precision (mAP) metrics. The results of this study are expected to be an initial contribution to the application of artificial intelligence in agriculture, particularly in helping farmers efficiently detect leaf diseases in beans to improve productivity and quality of harvest.