Claim Missing Document
Check
Articles

Found 28 Documents
Search

OPTIMASI KEUNTUNGAN PRODUKSI MAKANAN DENGAN METODE SIMPLEKS BERBASIS POM-QM FOR WINDOWS (Studi Kasus: UMKM Bakmi & Nasi Goreng Jowo Mas Narto) Abduh Riski; Agustina Pradjaningsih; Durratul Sayyidah Adilah Munawaroh
MathVisioN Vol 7 No 1 (2025): Maret 2025
Publisher : Prodi Matematika FMIPA Unirow Tuban

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55719/mv.v7i1.1339

Abstract

Micro, Small, and Medium Enterprises/UMKM are some of the businesses that have an important role in developing the economy in Indonesia. Bakmi and Nasi Goreng Jowo Mas Narto is one of the UMKM engaged in culinary in the Jember area. Based on the results of interviews conducted with owners, sales fluctuate in food production, thus making the profit of food sales not always predictable. Thus, this study aims to provide a solution for optimizing the benefits of food production with the simplex method using POM-QM for Windows. The results of this research show that these MSMEs will get optimal profits if they produce food, namely 50 portions of fried rice, 43 portions of fried noodles, 8 portions of fried vermicelli, and 8 portions of letek noodles with a profit of Rp 438,095 in a day.
The Goal Programming Method: Minimizing Expenses and Maximizing Assets for Optimizing the Financial Statements of Bank Syariah Indonesia Pradjaningsih, Agustina; Sukma Lailatul Fadillah; Riski, Abduh
RANGE: Jurnal Pendidikan Matematika Vol. 7 No. 1 (2025): Range Juli 2025
Publisher : Pendidikan Matematika UNIMOR

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32938/jpm.v7i1.9102

Abstract

Every company, including banks, prepares financial reports as a source of information regarding a company's performance and financial position. Economic reports have five essential elements: assets, liabilities, equity, income, and expenses. Each bank has several goals; to achieve the goal, a method is needed that can solve problems with several objectives.  This study aims to apply the Goal Programming (GP) method to solve several financial goals simultaneously and analyze solutions to optimize financial reports at Bank Syariah Indonesia (BSI). Goal Programming is a multi-objective optimization technique that allows decision-makers to balance conflicting goals by prioritizing deviations from predetermined targets. This study uses GP to model BSI's financial constraints and objectives: maximizing assets, minimizing liabilities, maximizing equity, maximizing income, and minimizing expenses. The solution for the GP model is calculated using Lingo software. So far, BSI has never used the Goal Programming Method to optimize financial statements, offering a new analytical framework for the bank's decision-making process.he study results show that Bank BSI's financial reports for 2019 to 2022 have been optimal by implementing the GP method and the assistance of Lingo software. This is indicated by all deviations being successfully minimized and achieving the target. The minimized expenses are IDR 68.012.380 million, and the maximized assets are IDR 1.018.471.648 million.
ANALYTICAL HIERARCHY PROCESS IN DETERMINING LEVEL THE FEASIBILITY OF THE AUTOMATED TELLER MACHINE LOCATION (CASE STUDY BANK SYARIAH INDONESIA JEMBER) Pradjaningsih, Agustina; Anggraeni, Dyan Mei; Santoso, Kiswara Agung
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (476.358 KB) | DOI: 10.30598/barekengvol16iss3pp1115-1122

Abstract

Bank Syariah Indonesia (BSI) is a new Islamic bank resulting from the merger of three Islamic banks that requires development to maximize the feasibility of the Automated Teller Machine (ATM) location. The placement of a proper ATM location can increase the bank's profits. This research was conducted to assist BSI Jember Regency in determining the feasibility level of 10 ATM locations that are already owned based on several criteria that have been selected. This study aims to analyze the results of the feasibility of the BSI ATM location. The method used in this study is the Analytical Hierarchy Process (AHP) method. AHP is a method used to rank an alternative decision best from several criteria that must be met or considered. In this study, four criteria and ten alternatives were used. These criteria are the distance of the ATM from the center of the crowd (X1), the distance of the ATM from the security office (X2), the number of residents (X3), and the number of non-BSI ATMs (X4), while the alternative is 10 BSI ATM locations. This study obtained the results of the feasibility of the location of the establishment of 10 BSI ATMs, with the BSI KKAS UNMUH ATM, which ranked first because it had the most considerable value of 0.1674.
SCHEDULING ANALYSIS BEDUGUL VILLA CONSTRUCTION PROJECT USING PERT AND CPM METHODS Santoso, Kiswara Agung; Yusnita, Ade Ratna; Pradjaningsih, Agustina
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 1 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss1pp0105-0116

Abstract

Scheduling in construction projects is necessary so that the planned time to complete the project can be achieved on time. the methods used in optimizing project scheduling are the Project Evaluation Review Technique (PERT) method and the Critical Path Method (CPM) method. Bedugul Villa is one of the projects that has been carried out with a work contract for 175 calendar days and the scheduling of which will be optimized in this study. The optimal duration for scheduling with the PERT method is to produce an optimal duration of 170 calendar days. The duration is 5 days faster than the existing schedule prepared by the project construction contractor, which is 175 calendar days. The probability of completion of the project is 87.7%. Calculations using the CPM method are 168 calendar days or 7 days earlier than the existing schedule made by the contractor.
Pengaman Teks dengan Kombinasi Metode Electronic Code Book (ECB) dan Kode Seven Segment Display santoso, kiswara Agung; Pradjaningsih, Agustina; Delenia, Erick
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 1: Februari 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241117448

Abstract

Layanan media sosial merupakan salah satu contoh perkembangan teknologi di bidang informasi. Salah satu cara meningkatkan sistem keamanan yaitu digunakannya ilmu kriptografi. Sudah banyak penelitian yang menghasilkan algoritma kriptografi, mulai dari algoritma yang baru, modifikasi algoritma bahkan kombinasi dari beberapa algoritma. Berdasarkan kebiasaan algoritma tersebut hacker tentu akan mencari celah untuk melakukan dekripsi dengan cara mencari algoritma dasar dari proses enkripsi untuk kemudian melakukan hack. Untuk mengantisipasi hal tersebut peneliti ingin melakukan modifikasi bukan pada algoritma pembentuknya melainkan modifikasi dari konversi system bilangan basis 2 berdasarkan Seven Segment Display. Salah satu metode yang sering digunakan untuk proses enkripsi yaitu metode Electronic Code Book (ECB). Seven Segment Display merupakan sebuah tampilan yang terbentuk dari tujuh kelompok segmen LED (Light Emitting Diode) yang dirangkai sedemikian sehingga membentuk angka–angka dari 0 hingga 9. Segmen LED dinotasikan dengan 1 jika menyala dan 0 jika mati, pola tersebut dapat digunakan untuk memanipulasi bit biner 7 bit khususnya karakter angka 0 hingga 9. Modifikasi terletak pada proses pembentukan bit kunci yang dibangkitkan berdasarkan aturan Seven Segment Display. Aturan ini digunakan untuk mengganti nilai bit, bila pada umumnya nilai bit didapat dari sistem bilangan basis 2 maka disini  nilai bit didapat dari aturan seven segment display dan inilah yang merupakan state of the art dari penelitian ini karena belum pernah digunakan sebelumnya.  Hasil penerapannya menunjukkan bahwa data yang dienkripsi menghasilkan chiperteks acak berupa karakter printable pada ASCII dan chiperteks dapat dikembalikan secara utuh tanpa ada informasi yang hilang. 
Implementasi Metode Goal Programming Untuk Optimasi Produksi Cokelat Pada UMKM Pradjaningsih, Agustina; Andora, Ela; Santoso, Kiswara Agung
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi Volume 12 Issue 2 December 2024
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/euler.v12i2.26904

Abstract

Chocolate is a food made from cocoa beans, namely Theobroma Cacao. Cocoa beans harvested are then processed to prevent rotting, which can reduce their quality. Currently, many chocolate manufacturers produce various variants of chocolate products. Each production company tries to achieve maximum profits with minimal costs. Production optimization problems can be addressed using objective programming, which is a method used to develop mathematical models of optimization problems involving multiple objectives or constraints. In goal programming, each goal is expressed as a goal constraint. Objective programming methods involve determining decision variables, objective constraints, and objective functions. Optimization problems are solved using the objective programming method with the help of Lingo software. Optimization calculations using Lingo software show that the production of each chocolate product has reached optimality. Production after optimization reached Rp. 10,380,000 per month, whereas production costs were only Rp. 10,500,000 per month before optimization. The availability of raw materials needed after optimization reached 85 recipes per month, whereas it was 90 recipes per month before optimization. The profit obtained is also optimal, namely Rp. 4,267,000 in one month.
Modified Migrating Birds Optimization Algorithm: Multi-Depot Capacitated Vehicle Routing Problem Wasilah, Dini Nur; Pradjaningsih, Agustina
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 3 No. 2 (2021)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v3i2.21257

Abstract

The multi-depot capacitated vehicle routing problem (MDCVRP) is a variation of the vehicle routing problem (VRP) modeled from distribution problems in the industrial world. This problem is a complex optimization problem in the field of operations research in applied mathematics. The MDCVRP is very interesting to discuss and find the best solution method. In this study, the authors apply the modified migrating birds' optimization (MMBO) algorithm, which is a hybrid of the migrating birds' optimization (MMBO) and iterated local search (ILS) algorithms. The purpose of this study is to analyze the results of applying the algorithm in solving MDCVRP. We used 20 MDCVRP data in simulation, grouped into four sizes (25, 50, 75, and 100 points). Based on the results of this research, it is known that the MMBO algorithm can produce the following solutions. First, on the data of 25 points, the experiment reaches the optimal value with small convergent iterations. Second, the best results on the data of 50 points have reached optimal value, but some other results have not been optimal. And, third, for data of 75 and 100 points, there is no optimal solution obtained by the MMBO algorithm. These results conclude that the MMBO algorithm effectively solves the MDCVRP problem with small data, but the bigger data, the more ineffective.Keywords: MDCVRP; VRP; optimization; operation research; applied Mathematics; MMBO. AbstrakMulti-depot capacitated vehicle routing problem (MDCVRP) adalah salah satu variasi dari vehicle routing problem (VRP) yang dimodelkan dari permasalahan distribusi di dunia industri. Permasalahan ini merupakan permasalahan optimasi kompleks dalam bidang riset operasi ilmu matematika terapan. MDCVRP sangat menarik untuk dibahas dan dicari metode penyelesaian terbaik. Dalam penelitian ini, penulis menerapkan algoritma modified migrating birds optimization (MMBO) yang merupakan hybrid algoritma migrating birds optimization (MBO) dan iterated local search (ILS). Tujuan penelitian ini adalah menganalisis hasil penerapan algoritma dalam menyelesaikan MDCVRP. Untuk simulasi, penulis menggunakan 20 data MDCVRP yang dikelompokkan menjadi empat ukuran (25, 50, 75, dan 100 titik). Berdasarkan hasil penelitian yang telah dilakukan, diketahui bahwa algoritma MMBO mampu menghasilkan solusi sebagai berikut. Pertama, Pada data 25 titik, percobaan mencapai nilai optimal dengan iterasi konvergen yang kecil. Kedua, Hasil terbaik pada data 50 titik telah mencapai nilai optimal namun sebagain hasil lainnya belum optimal. Dan ketiga, untuk data 75 dan 100 titik, tidak terdapat solusi optimal yang dihasilkan algoritma MMBO. Dari hasil tersebut dapat disimpulkan bahwa algoritma MMBO efektif untuk menyelesaikan MDCVRP data kecil, namun semakin besar datanya menjadi kurang efektif.Kata kunci: MDCVRP; VRP; optimasi; riset operasi; matematika terapan; MMBO. 
Prediction of Rice Production in Jember Regency Using Adaptive Neuro Fuzzy Inference System (ANFIS) Riski, Abduh; Putriana, Novia Ayu; Fadri, Firda; Kamsyakawuni, Ahmad; Pradjaningsih, Agustina; Santoso, Kiswara Agung; Sari, Merysa Puspita
ILKOM Jurnal Ilmiah Vol 17, No 3 (2025)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v17i3.2797.262-275

Abstract

Jember Regency is the fourth largest rice-producing regency/city in East Java, so Jember Regency dramatically contributes to increasing the agricultural sector in East Java Province. However, the level of rice production can fluctuate, which is influenced by other factors such as rainfall. A prediction system is needed to anticipate a decrease in rice production. This research aims to predict rice production in the Jember Regency using the Adaptive Neuro Fuzzy Inference System (ANFIS), highlighting the impact of key variables like rainfall, harvested area, and land productivity. This research consists of three stages: training, testing, and prediction. The input variables used in this research are rainfall (mm), harvested area (Ha.), and land productivity (Kw/Ha.), while the output variable is rice production (tons). The membership functions used are generalized Bell and Gaussian, with several combinations of many membership functions. The best model obtained from this research is a model that uses generalized bell membership functions with three membership functions for rainfall variables and two membership functions for harvest area and land productivity variables. The epoch (iteration) used to achieve minimum error is 100 epochs. The best model achieved high accuracy, producing a MAPE value of 0.080% in training and 1.525% in testing, indicating its strong potential for reliable agricultural production forecasting. The predicted amount of rice production in Jember Regency in 2024 was 922,136.8317 tons.