Claim Missing Document
Check
Articles

Found 2 Documents
Search

PEMODELAN BIVARIATE POLINOMIAL LOKAL PADA JUMLAH KEMATIAN IBU DAN BAYI DI JAWA TENGAH Prahutama, Alan; Suparti, Suparti; Ispriyanti, Dwi; Utami, Tiani Wahyu
Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI) Vol 1 (2018)
Publisher : Program Studi Statistika, FMIPA, Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1082.222 KB)

Abstract

Analisis regresi merupakan analisis dalam metode statistika untuk memodelkan hubungan antara variabel respon dengan variabel prediktor. Analisis regresi dapat dilakukan secara parametrik dan nonparametrik. Analisis regresi nonparametrik dilakukan apabila bentuk kurva regresinya tidak diketahui. Salah satu metode dalam analisis regresi nonparametrik adalah polinomial lokal. Polinomial lokal dilakukan berdasarkan pembobotan kernel, sehingga membutuhkan bandwidth. Pemilihan bandwidth optimal menggunakan Generalized Cross Validation (GCV). Pada penelitian ini dikembangkan model regresi bivariate polinomial lokal pada kasus pemodelan jumlah kematian ibu dan bayi di Jawa Tengah. Variabel prediktor yang digunakan adalah jumlah tenaga kesehatan. Nilai bandwidth optimla yang didapatkan adalah 1. Nilai MSE yang dihasilkan dari model jumlah kematian ibu adalah 1.017741 dan Nilai MSE yang dihasilkan dari model jumlah kematian bayi adalah 1.380833. Keywords: Bivariate, Polinomial Lokal, Jumlah kematian ibu, Jumlah kematian bayi.
ANALISIS DATA INFLASI INDONESIA MENGGUNAKAN METODE FOURIER DAN WAVELET MULTISCALE AUTOREGRESIVE Suparti, Suparti; Santoso, Rukun; Prahutama, Alan; Yasin, Hasbi; Devi, Alvita Rachma
Prosiding Seminar Nasional Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika (VARIANSI) Vol 1 (2018)
Publisher : Program Studi Statistika, FMIPA, Universitas Negeri Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (884.754 KB)

Abstract

Analisis regresi merupakan metode statistika untuk mengetahui hubungan antara variabel prediktor dan variabel respon. Pendekatan regresi dapat dilakukan dengan  pendekatan parametrik dan nonparametrik. Pendekatan parametrik ketat dengan asumsi dan harus dipenuhi untuk mendapatkan model yang baik. Sementara pendekatan nonparametrik tidak ketat dengan asumsi karena metode tersebut didasarkan pada pendekatan kurva yang tidak diketahui bentuknya. Pendekatan nonparametrik dapat dilakukan dengan beberapa pendekatan diantaranya metode Fourier dan Wavelet. Metode Fourier merupakan metode yang didasarkan pada deret cosinus atau sinus. Metode Fourier sangat sesuai untuk data yang mengalami pola berulang atau stasioner. Sedangkan pada pemodelan wavelet tidak hanya terbatas pada data berulang atau stasioner saja, akan tetapi juga mampu memodelkan data yang tidak stasioner. Pada penelitian ini dimodelkan nilai Inflasi di Indonesia dari Januari 2007 sampai Agustus 2017.  Variabel responnya adalah nilai inflasi, sedangkan variabel prediktornya adalah waktu. Metode Fourier dengan K=100 menghasilkan MSE sebesar 0,846216 dan R2 sebesar 80,12%. Model Wavelet menggunakan Multiscale Autoregresive dengan filter Haar, J=4 dan Aj = 2  mempunyai MSE sebesar 0,312 dengan R2  sebesar  96,91%.  Pada model Fourier dengan K=100 diperlukan parameter sebanyak 102 buah sedangkan model wavelet dengan J=4 dan Aj = 2 hanya diperlukan parameter sebanyak 10 buah. Jadi model wavelet sangat efisien dengan kinerja yang lebih bagus dibandingkan dengan model Fourier. Kata Kunci: Inflasi, nonparametrik, Fourier, Wavelet, MSE