Claim Missing Document
Check
Articles

Found 20 Documents
Search

Studi Pengaruh Penambahan Hidrogen Peroksida (H2O2) Terhadap Degradasi Methylene Blue Menggunakan Fotokatalis TiO2 – Bentonit Suhernadi, Arif; Wardhani, Sri; Purwonugroho, Danar
Jurnal Ilmu Kimia Universitas Brawijaya Vol 2, No 2 (2014)
Publisher : Jurusan Kimia, FMIPA Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (687.583 KB)

Abstract

Photocatalyst is a material that is able to accelerate the reaction rate of oxidation or reduction through a photochemical reaction. The aims of this study was examine the influence of addition of H2O2 and duration of irradition against photodegradation of methylene blue using TiO2-bentonite. Photodegradation was carried out with 10 mg/L at 25 mL of methylene blue and 50 mg of photocatalyst with variation of H2O2 addition of 0,1; 0,2; 0,3; 0.4; 0,5 dan 0,75 mL and variations of irradition duration of 20, 30, 40, 50 and 60 minute. The result showed that the highest fotodegradation of methylene blue occured in the addition of 0,2 mL of H2O2 and irradition duration of 60 minute with 93,93 % of degradation percentage. Keywords             : bentonite, TiO2, methylene blue, hydrogen peroxyde (H2O2), photodegradation.
DESORPSI KADMIUM(II) YANG TERIKAT PADA BIOMASSA Azolla microphylla-SITRAT MENGGUNAKAN LARUTAN HCl Amelinda, Falisca; Purwonugroho, Danar; Khunur, Mohammad Misbah
Jurnal Ilmu Kimia Universitas Brawijaya Vol 1, No 1 (2015)
Publisher : Jurusan Kimia, FMIPA Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.261 KB)

Abstract

ABSTRAK Penelitian desorpsi kadmium(II) yang terikat pada biomassa Azzola microphylla diesterifikasi dengan asam sitrat telah dilakukan. Penelitian ini bertujuan untuk menentukan konsentrasi larutan HCl dan waktu kontak optimum desorpsi kadmium(II). Biomassa A. microphylla sebanyak 5 g dicampur dengan 50 mL larutan asam sitrat 0,8 M dilanjutkan dengan pemanasan selama 3,5 jam pada suhu 120o C. Adsorpsi dilakukan dengan cara mengocok suspensi 0,10 g biosorben dalam 25 mL larutan kadmium(II) 100 mg/L pH 6 selama 60 menit. Desorpsi dilakukan dengan cara mensuspensikan biosorben yang telah mengikat kadmium(II) ke dalam 25 ml larutan HCl dengan variasi konsentrasi 0,01 M; 0,05 M; 0,1 M, 0,5 M; 1,0 M dan dilanjutkan dengan variasi waktu kontak 30, 5, 60, 75, 90 menit menggunakan konsentrasi optimum larutan HCl. Penentuan Konsentrasi kadmium(II) menggunakan spektrofotometer serapan atom. Hasil penelitian menunjukkan bahwa konsentrasi HCl dan waktu kontak berpengaruh terhadap desorpsi kadmium(II) yang terikat oleh biomassa A. microphylla diesterifikasi dengan asam sitrat. Kondisi optimum desorpsi kadmium(II) terjadi pada penggunaan larutan HCl 0,5 M dan waktu kontak 60 menit dengan persentase desorpsi sebesar 97,10 %. Kata kunci : asam sitrat, Azzola microphylla, desorpsi, esterifikasi, kadmium(II)
ADSORPSI SENG(II) OLEH BIOMASSA Azolla microphylla-SITRAT: KAJIAN DESORPSI MENGGUNAKAN LARUTAN ASAM NITRAT Felayati, Mifta Fauziah; Purwonugroho, Danar; Khunur, Mohammad Misbah
Jurnal Ilmu Kimia Universitas Brawijaya Vol 1, No 1 (2015)
Publisher : Jurusan Kimia, FMIPA Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (422.279 KB)

Abstract

Penelitian tentang desorpsi seng(II) dari biomassa Azolla microphylla diesterifikasi asam sitrat telah dilakukan. Tujuan penelitian ini adalah untuk menentukan kondisi optimum desorpsi seng(II) oleh biomassa Azolla microphylla diesterifikasi asam sitrat. Biomassa diesterifikasi dengan cara mencampurkan 5 g biomassa ke dalam 50 mL larutan asam sitrat 0,8 M dengan pemanasan 120°C selama 3,5 jam. Percobaan adsorpsi - desorpsi dilakukan menggunakan metode batch. Adsorpsi seng(II) 100 mg/L dilakukan pada pH 6 dengan waktu kontak 45 menit. Percobaan desorpsi dilakukan dengan cara mensuspensikan adsorben yang mengikat seng(II) ke dalam 25 mL larutan HNO3 dengan variasi konsentrasi 0,1; 0,5; 1,0; 1,5 dan 2,0 M dan variasi waktu kontak 30; 45; 60; 75 dan 90 menit. Konsentrasi seng(II) yang terdesorpsi ke dalam larutan pendesorpsi ditentukan menggunakan spektrofotometer serapan atom. Hasil penelitian menunjukkan bahwa kondisi optimum desorpsi seng(II) terjadi pada penggunaan larutan HNO3 1,0 M dan waktu kontak 60 menit memberikan persen desorpsi sebesar 93,62 %.
ADSORPSI SENG(II) OLEH BIOMASSA Azolla microphylla DIESTERIFIKASI DENGAN ASAM SITRAT: KAJIAN DESORPSI MENGGUNAKAN LARUTAN HCl Sinaga, Ria Septiani; Purwonugroho, Danar; Darjito, Darjito
Jurnal Ilmu Kimia Universitas Brawijaya Vol 1, No 1 (2015)
Publisher : Jurusan Kimia, FMIPA Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (488.882 KB)

Abstract

Telah dilakukan penelitian tentang desorpsi seng(II) yang terikat oleh biomassa Azolla microphylla diesterifikasi dengan asam sitrat menggunakan agen pendesorpsi larutan HCl. Penelitian ini dilakukan untuk mengetahui kondisi optimum desorpsi seng(II). Esterifikasi dilakukan dengan menambahkan 5 gram biomassa kering Azolla microphylla berukuran 120-150 mesh ke dalam 50 mL asam sitrat 0,8 M dan diaduk selama 2 jam. Campuran biomassa-sitrat dikeringkan pada suhu 60oC hingga kering dan dilanjutkan dengan pemanasan selama 3,5 jam pada suhu 120oC. Percobaan adsorpsi dilakukan dengan menambahkan adsorben ke dalam 25 mL larutan seng(II) 100 mg/L pH 6 dan dikocok selama 45 menit. selanjutnya dilakukan percobaan desorpsi dengan menambahkan adsorben kering yang telah mengikat seng(II) kedalam larutan HCl sebanyak 25 mL dengan variasi konsentrasi larutan HCl(0,1M;0,5M;1,0M;1,5M;2,0M) dan waktu kontak(30;45;60;75;90 menit). Konsentrasi seng(II) yang terdesorpsi ditentukan menggunakan spektrofotometer serapan atom. Hasil penelitian menunjukkan bahwa kondisi optimum desorpsi seng(II) terjadi pada penggunaan larutan HCl 1,0 M dan waktu kontak 45 menit dengan persentase desorpsi sebesar 97,78%.
ADSORPSI KADMIUM(II) MENGGUNAKAN BIOMASSA Azolla microphylla DIESTERIFIKASI DENGAN ASAM SITRAT: KAJIAN PENGARUH KONSENTRASI ASAM SITRAT DAN TEMPERATUR ESTERIFIKASI Isnaini, Yulia Nur; Purwonugroho, Danar; Tjahjanto, Rachmat Triandi
Jurnal Ilmu Kimia Universitas Brawijaya Vol 1, No 1 (2015)
Publisher : Jurusan Kimia, FMIPA Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (496.906 KB)

Abstract

Hasil penelitian sebelumnya menunjukkan bahwa esterifikasi biomassa Azolla microphylla dengan asam sitrat meningkatkan kapasitas adsorpsinya terhadap kadmium(II). Tujuan penelitian ini adalah mempelajari pengaruh konsentrasi asam sitrat dan temperatur esterifikasi terhadap adsorpsi kadmium(II) oleh biomassa Azolla microphylla yang diesterifikasi dengan asam sitrat (BA-Sitrat). Esterifikasi biomassa dilakukan dengan cara mensuspensikan biomassa ke dalam larutan asam sitrat konsentrasi 0,4 ; 0,6 ; 0,8 dan 1 M.  Suspensi yang terbentuk dikeringkan. Suspensi kering dipanaskan pada variasi temperatur 115 ; 120 ; 125 dan 130oC selama 3,5 jam. Karakterisasi BA-Sitrat dilakukan dengan metode analisis volumetri. Konsentrasi kadmium(II) setelah adsorpsi dilakukan menggunakan spektrofotometer serapan atom. Hasil penelitian menunjukkan bahwa konsentrasi asam sitrat dan temperatur esterifikasi berpengaruh terhadap tingkat keasaman BA-Sitrat dan kemampuan adsorpsinya terhadap kadmium(II). Tingkat keasaman dan kemampuan adsorpsi adsorben BA-Sitrat tertinggi dicapai pada penggunaan konsentrasi asam sitrat 0,6 M dan temperatur esterifikasi 120oC dengan persen adsorpsi kadmium(II) sebesar 45,76%
Pemurnian Emas dari Bijih Emas Berkadar Rendah Menggunakan Karbon Aktif dari Arang Tempurung Kelapa Mulyasuryani, Ani; Ismuyanto, Bambang; Purwonugroho, Danar
Jurnal Natur Indonesia Vol 14, No 1 (2011)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (57.031 KB) | DOI: 10.31258/jnat.14.1.1-6

Abstract

The activated carbon from the coconut shell can be used as an adsorbent for the recovery of gold. The optimum condition for gold recoverywas obtained at pH 3 (for adsorption) and pH 5 (for desorption) with 1 M thyocyanate solution and a 5 cm length of column (the mass ofactivated carbon is 20 grams). In this condition, the average gold recovery is 90.00%, silver 7.28% and copper 4.93%, that were used severalgold ore samples. The average purity degree of gold is 49.67%, depend on the concentration of gold, silver and copper in the gold oresample.
Preparation, characterization, and in vitro antibacterial activity of Cu(II)-pyrazinamide complexes, Karti'a, Galuh Wahyu; Purwonugroho, Danar; Srihardyastutie, Arie; Prananto, Yuniar Ponco
JKPK (Jurnal Kimia dan Pendidikan Kimia) Vol 9, No 2 (2024): JKPK (Jurnal Kimia dan Pendidikan Kimia)
Publisher : Program Studi Pendidikan Kimia FKIP Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/jkpk.v9i2.86189

Abstract

Transition metal complexes, including copper(II) complexes, are being investigated as potential next-generation antibacterial agents. This study aims to prepare several Cu(II)-pyrazinamide (Cu(II)-pza) complexes using Cu(II) salts (acetate, chloride, nitrate, sulphate) through a direct mixing technique. Different Cu(II) salts are anticipated to yield distinct complexes, resulting in varied antibacterial properties. The Cu(II)-pza complexes were characterized using melting point analysis, infrared spectroscopy, and powder X-ray diffraction (XRD). Melting point analysis provides insights into the physical properties of the complexes. Infrared spectroscopy identifies functional groups and predicts chemical bonds within the complexes. Powder XRD analyzes the characteristic diffraction patterns of the complexes. Experimental data reveal that the infrared spectra of all Cu(II)-pza complexes exhibit typical absorption bands of the pyrazinamide ligand (N-H, C=O, C-N, and C=N). Powder XRD analysis shows different diffraction patterns for each complex, indicating the formation of different compounds due to variations in anion and metal-ligand interactions, with the sulphate complex matching a previously reported complex. Melting point tests indicate the decomposition of the complexes within the range of 215–225 °C, except for the acetate complex, which decomposes at 275 °C. The antibacterial activities of these complexes against S. aureus and E. coli were examined in vitro based on inhibition zone diameter and MIC value. The sulphate, nitrate, and chloride complexes exhibit MIC values of 1,000 ppm and MBC values of 6,000 ppm, demonstrating better antibacterial activity against S. aureus than E. coli. These findings suggest the potential of Cu(II)-pza complexes as antibacterial agents. Further studies, such as crystal structure determination, are necessary to explore the possible mechanisms of antibacterial activity.[1]      N. C. Handayani, A. Kusuma, R. Purwanto, R. E. Prasetya, and A. Budiman, “Pengembangan Agen Potensi Pengembangan Agen Antibakteri dari Senyawa Kompleks Logam Transisi di Indonesia,” The Indonesian Green Technology Journal, vol. 10, no. 1, pp. 9-20, 2021.[2]      R. S. Hellberg and E. Chu, “Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review,” Crit. Rev. Microbiol., vol. 42, no. 4, pp. 548–572, 2016. doi: 10.3109/1040841X.2014.967385.[3]      T. Li, Y. Wang, X. Zhang, J. Chen, and L. Sun, “Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health,” Sci. Total Environ., vol. 860, p. 160148, 2023. doi: 10.1016/j.scitotenv.2022.160148.[4]      N. A. Church and J. L. McKillip, “Antibiotic resistance crisis: challenges and imperatives,” Biologia (Bratisl)., vol. 76, no. 5, pp. 1535–1550, 2021. doi: 10.2478/s11756-021-00707-5.[5]      World Health Organization, "Global Action Plan for antimicrobial resistance,” vol. 105, no. 5, p. 70780, 2015. [Online]. Available: https://www.who.int/publications/i/item/9789241509763.[6]        World Health Organization, "Antibacterial agents in clinical development: an analysis of the antibacterial clinical development," 2019. [Online]. Available: https://www.who.int/publications/i/item/9789240000193.[7]      M. Rizzotto, “Metal Complexes as Antimicrobial Agents,” A Search Antibact. Agents, vol. 10, p. 45651, 2012.[8]      S. N. Sovari and F. Zobi, “Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12,” Chem., vol. 2, no. 2, pp. 418–452, 2020. doi: 10.3390/chemistry2020025.[9]      M. Claudel, C. Ragonnaud, S. Yousfi, A. Choisy, and R. Gaertner, “New Antimicrobial Strategies Based on Metal Complexes,” Chemistry, vol. 2, no. 4, pp. 849–899, 2020. doi: 10.3390/chemistry2040067.[10]    G. Borthagaray, L. Quintana, F. Brocal, and L. A. Rodríguez, “Infectious Diseases and Epidemiology Essential Transition Metal Ion Complexation as a Strategy to Improve the Antimicrobial Activity of Organic Drugs,” J. Infect. Dis. Epidemiol., vol. 2, no. 2, p. 14, 2016.[11] S. Mittapally, R. Taranum, and S. Parveen, “Metal ions as antibacterial agents,” Journal of Drug Delivery and Therapeutics, vol. 8, pp. 411–419, 2018. doi: 10.22270/jddt.v8i6.2018.[12]    J. Ara Shampa, “Physiochemical and Antibacterial Activity Investigation on Noble Schiff Base Cu(II) Complex,” Am. J. Heterocycl. Chem., vol. 3, no. 4, p. 37, 2017.[13] A. E. Ali, M. El-Ghamry, M. H. Saker, and A. K. Hussein, “Spectral, thermal studies and biological activity of pyrazinamide complexes,” Heliyon, vol. 5, no. 11, p. e02912, 2019. doi: 10.1016/j.heliyon.2019.e02912.[14] Q. C. Burandt, B. L. Knierim, S. Sundström, and F. Jacquet, “Further Limitations of Synthetic Fungicide Use and Expansion of Organic Agriculture in Europe Will Increase the Environmental and Health Risks of Chemical Crop Protection Caused by Copper-Containing Fungicides,” Environ. Toxicol. Chem., vol. 43, no. 1, pp. 19–30, 2024. doi: 10.1002/etc.4995.[15]    M. Vincent, L. Duval, R. Hartemann, J. Noury, and P. Perrin, “Antimicrobial applications of copper,” Int. J. Hyg. Environ. Health, vol. 219, no. 7, pp. 585–591, 2016. doi: 10.1016/j.ijheh.2016.07.003.[16]    M. S. Khan, R. Farooq, M. A. Baig, and H. Shahid, “Computational investigation of pyrazinamide drugs and its transition metal complexes using a DFT approach,” J. Comput. Chem., vol. 45, no. 10, pp. 622–632, 2024. doi: 10.1002/jcc.26563.[17]    E. A. Lamont and N. A. Dillon, “The Bewildering Antitubercular Action of Pyrazinamide,” Microbiology and Molecular Biology Reviews, vol. 84, no. 2, pp. 1–15, 2020. doi: 10.1128/MMBR.00034-19.[18]    N. Raman and R. Jeyamurugan, “Synthesis, characterization, and DNA interaction of mononuclear copper(II) and zinc(II) complexes having a hard-soft NS donor ligand,” J. Coord. Chem., vol. 62, no. 14, pp. 2375–2387, 2009. doi: 10.1080/00958970902932390.[19]    M. M. Khunur and Y. P. Prananto, “Structural analysis of polymeric copper(ii)-pyrazinamide complexes prepared from two different copper(II) salts,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 6, 2019. doi: 10.1088/1757-899X/546/6/062015.[20]    M. Ahmed, S. H. Naz, M. H. Siddiqui, M. Tahir, and A. S. Farooqi, “Synthesis, characterization and anticancer activity of isonicotinylhydrazide metal complexes,” J. Chem. Soc. Pakistan, vol. 41, no. 1, pp. 113–121, 2019. [Online]. Available: https://jcsp.org.pk/issueDetail.aspx?aid=90.[21]    A. H. Rafika, M. H. Tarafder, K. Mahmood, and S. I. A. Razak, “Effect of drying temperature and drying time on the crystallinity degree of Zn(II)-tartrate complex,” Kuwait J. Sci., vol. 50, no. 4, pp. 596–601, 2023. doi: 10.48129/kjs.v50i4.11354.[22]    S. Tsuzuki, T. Hayashi, K. Muranaka, M. Kamata, T. Iwasaki, and K. Nishimura, “National trend of blood-stream infection attributable deaths caused by Staphylococcus aureus and Escherichia coli in Japan,” J. Infect. Chemother., vol. 26, no. 4, pp. 367–371, 2020. doi: 10.1016/j.jiac.2019.10.014.[23]    A. S. Coia, G. Müller, F. Körner, and H. W. Lang, “Exploring the Role of Transition Metal Complexes in Artistic Coloration through a Bottom-Up Scientific Approach,” J. Cult. Herit., 2024. doi: 10.1016/j.culher.2023.05.004.[24]    M. Manimohan, S. Karthikeyan, M. Ponnuswamy, and M. S. Suriyanarayanan, “Biologically active Co (II), Cu (II), Zn (II) centered water soluble novel isoniazid grafted O-carboxymethyl chitosan Schiff base ligand metal complexes: Synthesis, spectral characterisation, and DNA nuclease activity,” International Journal of Biological Macromolecules, vol. 163, pp. 801-816, 2020. doi: 10.1016/j.ijbiomac.2020.06.118.[25]    W. H. Turner, "Optical Absorption Spectra of Iron in The Rock-Forming Silicates: a Discussion," American Mineralogist: Journal of Earth and Planetary Materials, vol. 52, no. 3-4, pp. 553-555, 1967. doi: 10.2138/am-1967-3-428.[26] Y. Chen, Z. Lu, and X. Zhang, “Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences — A Review,” Appl. Spectrosc. Rev., vol. 50, no. 4, pp. 30223–30250, 2015. doi: 10.1080/05704928.2015.1115401.[27]    M. Ali, S. G. Tushar, A. K. Naji, and R. Ahmad, “Design, synthesis and antitubercular evaluation of novel series of pyrazinecarboxamide metal complexes,” Iran. J. Pharm. Res., vol. 17, no. 1, pp. 93–99, 2018. doi: 10.22037/ijpr.2018.2124.[28]    B. Kozlevčar, B. Zupančič, M. Hren, and B. Šket, "Complexes of copper (II) acetate with nicotinamide: preparation, characterization and fungicidal activity; crystal structures of [Cu2(O2CCH3)4(nia)] and [Cu2(O2CCH3)4(nia)2]," Polyhedron, vol. 18, no. 5, pp. 755-762, 1999. doi: 10.1016/S0277-5387(98)00354-7.[29] O. Kristiansson, “Bis(pyrazine-2-carboxamide)bis(trifluoromethanesulfonato)copper(II) monohydrate,” Acta Crystallogr. Sect. E Struct. Reports Online, vol. 58, no. 3, pp. m130–m132, 2002. doi: 10.1107/S1600536802006196.[30]    N. C. Handayani, I. K. Dewi, M. Surya, and S. Utami, “Synthesis, Characterization, and Antibacterial Activity of Anion-Depended Cu (II)-Niacinamide Complexes,” The Indonesian Green Technology Journal, vol. 11, no. 2, pp. 1–12, 2020.[31]    P. Ghanghas, S. K. Ghanghas, and A. S. Thakur, “Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications,” Inorg. Chem. Commun., vol. 130, p. 108710, 2021. doi: 10.1016/j.inoche.2021.108710.[32]    N. C. S. Mykytczuk, P. L. Trevors, and E. B. Twiss, “Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress,” Prog. Biophys. Mol. Biol., vol. 95, no. 1–3, pp. 60–82, 2007. doi: 10.1016/j.pbiomolbio.2007.03.001.[33]    S. Njobdi, N. T. J. Jebin, and A. J. Ishaku, “Antibacterial Activity of Zingiber officinale on Escherichia coli and Staphylococcus aureus,” J. Adv. Biol. Biotechnol., vol. 19, no. 1, pp. 1–8, 2018. doi: 10.9734/jabb/2018/39840.[34]    G. Kumaravel, R. R. Mounika, S. Harini, and K. K. Nithya, “Bioorganic Chemistry Exploiting the biological efficacy of benzimidazole based Schiff base complexes with L-Histidine as a co-ligand: Combined molecular docking, DNA interaction, antimicrobial and cytotoxic studies,” Bioorg. Chem., vol. 77, pp. 269–279, 2018. doi: 10.1016/j.bioorg.2018.01.022.[35]    M. Shen, L. Li, T. Hu, and J. Fang, “Antibacterial applications of metal–organic frameworks and their composites,” Compr. Rev. Food Sci. Food Saf., vol. 19, no. 4, pp. 1397–1419, 2020. doi: 10.1111/1541-4337.12558.
The Adsorption of Cr(VI) Using Chitosan-Alumina Adsorbent Darjito, Darjito; Purwonugroho, Danar; Ningsih, Rumiati
The Journal of Pure and Applied Chemistry Research Vol. 3 No. 2 (2014)
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (311.921 KB) | DOI: 10.21776/ub.jpacr.%y.03.02.139

Abstract

Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI) ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm) was also studied. Chromium (VI) was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.
Precipitation of Zn(II)-Pyrazinamide Complex from Ethanol Solution as an Antibacterial Candidate based on Transitional Metal Complex Compounds Adiba, Naila Azmi; Purwonugroho, Danar; Prananto, Yuniar Ponco
Indonesian Green Technology Journal Vol. 13 No. 1 (2024)
Publisher : Sekolah Pascasarjana, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.igtj.2024.013.01.01

Abstract

The Zn(II)-pyrazinamide complex compound is currently being developed as an antibacterial agent. To obtain the Zn(II)-pyrazinamide complex effectively, many factors must be considered, including the type of zinc(II) salt and the mole ratio. The aim of this research is to examine the influence of the type of zinc(II) salt and the mole ratio in the precipitation of the Zn(II)-pyrazinamide complex to obtain efficient results. The Zn(II)-pyrazinamide complex was synthesized using a direct mixing technique in ethanol solution with metal:ligand mole ratios of 1:2 and 1:4 and with types of zinc(II) salts, namely acetate, chloride, and nitrate. Based on the research results, the anion of the zinc(II) salt leads to the precipitation of the complex while the metal:ligand mole ratio leads to the resulting yield. An efficient synthesis condition to obtain the Zn(II)-pyrazinamide complex is to use ZnCl2 salt and a mole ratio of 1:4. Experimental data also shows that the Zn(II)-pyrazinamide complex precipitate melts at a temperature of 234oC, while infrared spectroscopy analysis shows the characteristic carbonyl and amide groups of pyrazinamide. Meanwhile, powder-XRD analysis showed that the resulting complex had a different structure than that previously reported.
Hydrothermal synthesis of crystalline Aluminium(III)-Tartrate: effect of tartrate type and molar ratio Prananto, Yuniar Ponco; Purwonugroho, Danar; Dzakwan, M. Naufal Tsaqif; Setianingsih, Tutik; Syarifah, Nidatul
Acta Chimica Asiana Vol. 8 No. 1 (2025)
Publisher : The Indonesian Chemical Society, Chapter Nusa Tenggara and The University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/aca.v8i1.244

Abstract

Aluminium(III)-tartrate (Al-T) complex is a compound that commonly used as mordent in textile dyeing. This complex is soluble in hot water; thus, information on the isolation of crystallised Al-T is limited. Isolation of crystallised Al-T is needed to gain a high purity complex for further application in the textile industry. This study aims to synthesize and isolate crystalline complex of Al-T. Hydrothermal method was used to obtain the targeted complex. Effects of tartrate precursor and Al(III):tartrate mol ratio in the synthesis of Al-T complex were also investigated. The synthesis was done at 150 °C for 24 hours in several Al(III):tartrate mol ratios (1:2, 2:1, and 2:3) using two different tartrate precursors, namely L-tartaric acid and KNa-tartrate. The synthesized complexes were identified by infrared spectroscopy and powder-XRD analyses, and then further characterised by UV Vis - DRS, DTA-TGA, and SEM. Experimental data shows that the mol ratio affects the precipitation of the Al-T complex, in which a white crystalline solid was only precipitated out from the 2:1 reaction by both tartrate precursors. Different tartrate precursors used in the synthesis may alter the crystallization and result in an Al-T complex with slightly different thermal decomposition profile, UV-Vis DRS spectra profile, and different yield due to the different nature of the tartrate precursor. This finding is expected to support the possibility of Al-T mass production as mordent in textile dyeing