Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediction of Performance and Emission of Gasoline Engine Fueled with a Gasoline-Ethanol-Methanol Mixture Using One Dimensional Engine Modelling Based on Engine Test Results Nugroho, Rudi Cahyo; Teguh Soewono, Respatya; Kurniawan, Ade; Ma'ruf, Muhammad; Sakti, Mohammad Amanta Kumala; Mukti, Suherman; Fuadi, Abid Paripurna; Nugroho, Bagus Anang
Automotive Experiences Vol 7 No 3 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.12141

Abstract

The depletion of petroleum reserves as the basic raw material for gasoline production has driven studies into alternative fuels. One of the alternative fuels is alcohol, both ethanol and methanol. Due to their liquid form and physical-chemical properties similar to gasoline, small modifications to the engine are required. This paper will explain the effect of using a mixture of gasoline (in this case, RON 98 gasoline with methanol or methanol on engine performance and emissions. The fuel mixtures are as follows: G100, E10, E20, E30, M10, M20, M30. AVL Boost simulation software was used as a tool for 1-dimensional engine modelling, where the modeling is based on engine testing with G100 fuel. The results show that with increasing ethanol-methanol composition, torque and power decrease, and SFC increases. On the emission side, CO, CO2, and HC were decreased and NOx increased.
Energy consumption, CO2, and cost analysis of hybrid and battery electric motorcycle Yuwono, Taufik; Sukra, Kurnia Fajar Adhi; Soewono, Respatya Teguh; Indriatmono, Dedy; Fuad, Nur Muhamad; Ma'ruf, Muhammad; Samanhudi, Ramadhani Deniartio; Kurniawan, Ade; Nugroho, Rudi Cahyo; Wahidin, Agus; Hayoto, Vebriyanti; Suryantoro, Muchammad Taufiq; Mokhtar, Mokhtar; Hidayat, Muhammad Novel; Wahono, Bambang; Pratama, Mulia; Nur, Arifin; Dimyani, Ahmad; Suherman, Suherman; Wardana, Muhammad Khristamto Aditya; Praptijanto, Achmad; Putrasari, Yanuandri; Prawara, Budi; Budianto, Hari
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 2 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.989

Abstract

The electrification of the two-wheel vehicle segment is an important strategy for decarbonising the transportation sector. This study aimed to assess the hybridisation of gasoline motorcycles with battery electric systems as an option for decarbonisation. A gasoline motorcycle that had been converted to a hybrid motorcycle was evaluated in several aspects: energy consumption, greenhouse gas (GHG) emission, and cost of energy. The vehicle was tested under the United Nations economic commission for europe (UNECE) Regulation No.40 and compared to a battery electric motorcycle. The test in internal combustion engine (ICE) mode consumed 233.31 Wh/km of specific energy, emitted 60.69 gCO2/km and cost 1.65 US-cent/km on average. The test in hybrid mode consumed specific energy at 6 % higher and 4 % lower specific energy consumption than ICE, thus not improving the carbon dioxide (CO2) emission and operating cost. In electric battery mode, energy consumption was saved by 83 %, with 35 % lower CO2 and 74 % cost savings. The battery electric motorcycle runs more efficiently with 88 % lower energy consumption, 53.8 % lower CO2 and saved cost by 82 %. If the hybrid controller is improved in future development, it could lower specific energy consumption by 41.7 %, reduce CO2 by 11.2 % and save cost by 35.7 %.