Claim Missing Document
Check
Articles

Found 2 Documents
Search

Investigating Knocking Potential, Cycle Stability, and Emission Characteristics in Lean Spark Ignition Engine with Gasoline, Ethanol, and Methanol Mokhtar, Mokhtar; Sugiarto, Bambang; Agama, Askar Adika; Kurniawan, Ade; Auzani, Ahmad Syihan
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10607

Abstract

In this paper, an investigation of the use of gasoline-ethanol-methanol on the spark ignition engine is presented, it is not common practice on public roads to use three fuels simultaneously in a spark-ignition engine. Using methanol reduces the ignition delay during combustion, especially at lean air-fuel ratios, and reduces knocking potential in small amounts. The best result ignition delay with value λ= 1,3 obtained in the E5M15 mixture with SoC occurred at 325 CAo, while the value λ= 1,0 also obtained on the same mixture with SoC occurred at 321,5 CAo. The CCV results indicate a more sloping increase in the COV (coefficient of variation) value when using GEM fuel, particularly with the addition of more methanol. The addition of methanol enhances combustion progression and improves the ability of the fuel blend to sustain combustion under lean conditions. Regarding the torque and power values, at λ= 1,0; 1,1; 1,2 are not significantly different, while the value λ= 1,3 is below the other λ values.
Energy consumption, CO2, and cost analysis of hybrid and battery electric motorcycle Yuwono, Taufik; Sukra, Kurnia Fajar Adhi; Soewono, Respatya Teguh; Indriatmono, Dedy; Fuad, Nur Muhamad; Ma'ruf, Muhammad; Samanhudi, Ramadhani Deniartio; Kurniawan, Ade; Nugroho, Rudi Cahyo; Wahidin, Agus; Hayoto, Vebriyanti; Suryantoro, Muchammad Taufiq; Mokhtar, Mokhtar; Hidayat, Muhammad Novel; Wahono, Bambang; Pratama, Mulia; Nur, Arifin; Dimyani, Ahmad; Suherman, Suherman; Wardana, Muhammad Khristamto Aditya; Praptijanto, Achmad; Putrasari, Yanuandri; Prawara, Budi; Budianto, Hari
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 2 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.989

Abstract

The electrification of the two-wheel vehicle segment is an important strategy for decarbonising the transportation sector. This study aimed to assess the hybridisation of gasoline motorcycles with battery electric systems as an option for decarbonisation. A gasoline motorcycle that had been converted to a hybrid motorcycle was evaluated in several aspects: energy consumption, greenhouse gas (GHG) emission, and cost of energy. The vehicle was tested under the United Nations economic commission for europe (UNECE) Regulation No.40 and compared to a battery electric motorcycle. The test in internal combustion engine (ICE) mode consumed 233.31 Wh/km of specific energy, emitted 60.69 gCO2/km and cost 1.65 US-cent/km on average. The test in hybrid mode consumed specific energy at 6 % higher and 4 % lower specific energy consumption than ICE, thus not improving the carbon dioxide (CO2) emission and operating cost. In electric battery mode, energy consumption was saved by 83 %, with 35 % lower CO2 and 74 % cost savings. The battery electric motorcycle runs more efficiently with 88 % lower energy consumption, 53.8 % lower CO2 and saved cost by 82 %. If the hybrid controller is improved in future development, it could lower specific energy consumption by 41.7 %, reduce CO2 by 11.2 % and save cost by 35.7 %.