Claim Missing Document
Check
Articles

Found 15 Documents
Search

TRANSFER TEKNOLOGI MULTI EFFECT EVAPORATOR (MME) PADA UKM GULA MERAH DI DESA SUMBER AGUNG KEDIRI Argo, Bambang Dwi; Oktavian, Rama; Putranto, Angky Wahyu; Lestari, Anggi; Ramadhan, Faisal; Wihandika, Randy Cahya
JURNAL WIDYA LAKSANA Vol 9 No 2 (2020)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (564.835 KB) | DOI: 10.23887/jwl.v9i2.22277

Abstract

Kegiatan pengabdian kepada masyarakat ini bertujuan untuk memoderenisasi alat mesin yang digunakan memproduksi gula merah agar dapat mempermudah dan mempercepat proses produksi serta untuk dapat menekan total biaya operasional. Selain itu kegiatan ini ditujukan untuk membantu meningkatkan produksi dan kualitas produk gula merah bagi UKM Gula Merah di Kabupaten Kediri. Namun demikian fokus kegiatan yang dilakukan pada kegiatan pengabdian ini yaitu proses pembuatan beberapa komponen evaporator, penyuluhan alat dan pendampingan kepada anggota UKM Gula Manis. Hasil dari kegiatan pengabdian kepada masyarakat ini yaitu berupa bantuan alat yang meliputi mainholeevaporator, system perpipaan dan pompa kepada mitra agar dapat menjalankan produksi gula merah dengan teknologi yang sudah dirancang. Hasil pengujian dan perhitungan dari performansi alat juga telah dilakukan untuk mendukung proses operasi menggunakan evaporator. Selain itu kegiatan sosialisasi proses pembuatan gula merah kapasitas industri juga telah dilaksanakan dengan baik.
Prediksi Tinggi Muka Air (TMA) Untuk Deteksi Dini Bencana Banjir Menggunakan SVR-TVIWPSO Soebroto, Arief Andy; Cholissodin, Imam; Wihandika, Randy Cahya; Frestantiya, Maria Tenika; Arief, Ziya El
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2 No 2: Oktober 2015
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1302.981 KB) | DOI: 10.25126/jtiik.201522126

Abstract

Abstrak Banjir merupakan salah satu jenis bencana alam yang tidak dapat diprediksi kedatangannya, salah satu penyebabnya adalah adanya hujan yang terus – menerus(dari peristiwa alam). Faktor penyebab banjir dari segi meteorologi yaitu curah hujan yang tinggi dan air laut yang sedang pasang sehingga mengakibatkan tinggi permukaan air meningkat. Analisis terhadap data curah hujan serta tinggi permukaan air setiap periodenya dirasa masih belum dapat menyelesaikan permasalahan yang ada. Oleh karena itu, pada penelitian ini diusulkan teknik integrasi metode Time Variant Inertia Weight Particle Swarm Optimization(TVIWPSO) dan Support Vector Regression(SVR). Implementasi memadukan metode Regresi yaitu SVR untuk forecasting TMA, sedangkan TVIWPSO digunakan untuk mengoptimalisasi parameter – parameter yang digunakan di dalam SVR untuk memperoleh kinerja yang maksimal dan hasil yang akurat. Harapannya sistem ini akan dapat membantu mengatasi permasalahan untuk pendeteksian dini bencana banjir karena faktor cuaca yang tidak menentu. Hasil pengujian yang didapat dari 10 data bulanan yang berbeda menunjukkan bahwa didapatkan nilai error terkecil sebesar 0.00755 dengan menggunakan Mean Absolute Error untuk data Juni 2007 dengan menggunakan integrasi metode SVR-TVIWPSO. Kata Kunci : Support Vector Regression, Tinggi Muka Air, Time Variant Inertia Weight Particle Swarm Optimization. Abstract Flood is one type of natural disaster that can not be predicted its arrival, one reason is the rain that constantly occurs (from natural events). Factors that cause flooding in terms of meteorology are high rainfall and sea water was high, resulting in high water level increases. Analysis of rainfall data and water level in each period it is still not able to solve existing problems. Therefore, in this study the method proposed integration techniques Time Variant Inertia Weight Particle Swarm Optimization (TVIWPSO) and Support Vector Regression (SVR). Implementation combines regression method for forecasting TMA is SVR, while TVIWPSO used to optimize parameters that used in the SVR to obtain maximum performance and accurate results. Hope this system will be able to help solve the problems for the early detection of floods due to erratic weather. The result of forecasting experiment in water level forecasting from 10 monthly different data show that the smallest error rate is amount to 0.00755 using Mean Absolute Error for June 2007 with the integration method SVR-TVIWPSO. Keywords: Support Vector Regression, water level, Time Variant Inertia Weight Particle Swarm Optimization.
Implementasi Metode K-Nearest Neighbour Dengan Pembobotan TF.IDF.ICF Untuk Kategorisasi Ide Kreatif Pada Perusahaan Putri, Rekyan Regasari Mardi; Herlambang, Romario Yudo; Wihandika, Randy Cahya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 2: Juni 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (736.763 KB) | DOI: 10.25126/jtiik.201742296

Abstract

AbstrakIde kreatif/inovasi merupakan hal yang dibutuhkan perusahaan dalam pengembangan sebuah individu, kelompok ataupun perusahaan pada teknologi seperti pada masa ini. Pengembangan ide kreatif berpengaruh pada peningkatan kinerja perusahaan. Pada kebanyakan kasus, pengelompokan ide tersebut harus dikelompokkan dengan kecocokan tema yang diusung untuk mempermudah proses pencarian. Oleh sebab itu dibutuhkan suatu sistem yang mampu bekerja secara otomatis untuk mengelompokkan ide tersebut. Kemunginan salah satu teknik pembobotan yang digunakan adalah dengan meggunakan TF.IDF.ICF, yang telah mengalami pengembangan dari metode sebelumnya. TF.IDF.ICF tidak dapat digunakan sendiri melainkan harus ada metode perhitungan jarak seperti Cosine Similarity dan metode klasifikasi lain seperti KNN dapat dipakai ke semua atribut. Aplikasi ini nantinya akan diterapkan pada perusahaan PJB Paiton sebagai studi kasus dan ide kreatif yang dikategorikan, dituliskan dalam Bahasa Indonesia. Aplikasi ini akan melakukan beberapa tahap pemrosesan seperti tokenizing yaitu pemisahan kalimat menjadi tiap kata, filtering yang merupakan penghapusan stopwords, stemming, cosine similarity dan  KNN yang masing-masing metode digunakan untuk perhitungan jarak dan proses perhitungan klasifikasi Dari hasil pengujian yang telah dilakukan, sistem mampu menghasilkan akurasi terbaik sebesar 93% menggunakan dengan nilai k sebesar 1 menggunakan presentase data uji sebanyak 50 akan menghasilkan klasifikasi ideal.Kata kunci: ide, kelas, cosine, knn.AbstractCreative ide is one thing that needed by the company for group development or even the company itself. The development of creative ideas has a big influence on improving corporate performance. On most cases, the clasification of the idea must be grouped based on the similarity of the theme that submitted to simplify the searching process. Therefore we need a system that could work automatically to classify the idea. Probably, one weighting techniques that used is TF.IDF.ICF that already been developed from the method before. TF.IDF.ICF cant be used alone. there must be another method that used before, such as cosine similarity for distance calculation method and KNN for classification method in order TF.IDF.ICF can be used by all atributes. This application will be focused on the PJB company's creative idea and these ideas will be in indonesian language. This application will do a few processing steps such as, tokenizing for breaking sentence into words, filtering which is elimination of stopwords, stemming, cosine similarity, and KNN. each method used for distance calculation and classification calculation process. From the testing result that has been done,the system could produce the best accuracy as big as 93% by using the value of K as big as 1 using the precentage of test data as big 50 produce the ideal classification.Keywords: idea, class, cosine, knn
Peringkasan Artikel Berbahasa Indonesia Menggunakan TextRank dengan Pembobotan BM25 Hernawan, Yurdha Fadhila; Adikara, Putra Pandu; Wihandika, Randy Cahya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 1: Februari 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022913765

Abstract

Penggunaan internet sebagai sumber informasi telah membawa manusia pada era one click away. Apa pun bisa diakses di mana pun kapan pun, baik secara visual maupun tidak. Namun, tidak semua informasi yang diakses selalu sesuai dengan konteks yang diinginkan. Untuk memudahkan pengguna internet dalam mendapatkan informasi yang ringkas dengan tidak merusak atau menghilangkan informasi penting, maka dibutuhkan suatu peringkasan otomatis. Salah satu cara untuk mendapatkan ringkasan pada sebuah dokumen adalah dengan mencari kumpulan kalimat penting pada dokumen yang dapat merepresentasikan dokumen asli secara keseluruhan. Metode peringkasan tersebut disebut juga dengan peringkasan ekstraktif. Pada penelitian ini, peringkasan ekstraktif dilakukan dengan memeringkatkan setiap kalimat pada sebuah dokumen dan mengambil kalimat dengan peringkat teratas sebagai ringkasan. Metode TextRank yang digunakan pada penelitian ini merepresentasikan dokumen sebagai graf, setiap kalimat dianggap sebagai node dan hubungan antara kalimat (node) merupakan nilai similarity antar kalimat. Fungsi similarity yang digunakan adalah BM25 dengan metode pemeringkatan PageRank. Panjang ringkasan yang dihasilkan sistem disesuaikan dengan besar nilai compression rate yang digunakan. Setelah membandingkan hasil ringkasan yang didapatkan sistem peringkasan otomatis dengan hasil ringkasan yang didapatkan dari expert (pakar) sebanyak 10 dokumen, penelitian ini berhasil dilakukan dengan kualitas ringkasan terbaik didapatkan pada saat penggunaan compression rate sebesar 30% dengan nilai rata-rata precision, recall, dan f-measure secara berturut-turut adalah 0,552; 0,552; dan 0,552. AbstractThe use of the internet as a source of information has brought humans to a oneclick era. Anything can be accessed anywhere, visually or not. However, every information accessed is not always match with the context itself. An automatic summarization is needed to help people to get the concise informations without ruin the context and missing the point. One way to get a summarize of the document is to find a collection of important sentences in the document that can represent the original document as a whole. That automatic text summarization method is also called extractive summarize. In this study, extractive summarization is done by checking each sentence in a document and ranking the important sentences. The TextRank method used in this study will represent the document as a graph, each sentence will be considered as a node and the relationship between sentences (nodes) is the value of similarity between sentences. The similarity function used is BM25 with the PageRank as ranking method. The resulting length of the system will be adjusted to the value of the level of compression used. After comparing the summarization result between the automatic system and an expert of 10 documents, this research is successfully carried out with the best quality is obtained when using a compression rate of 30% with an average value of precision, recall, and f-measure is 0.552; 0.552; and 0.552.  
Uji Parameter dan Arsitektur Convolutional Neural Network untuk Mendeteksi Citra Wajah Bermasker Sari, Dewi Novita; Rahman, Muh. Arif; Wihandika, Randy Cahya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022976776

Abstract

Deteksi citra wajah bermasker dibutuhkan pada masa pandemi COVID-19 oleh lembaga-lembaga yang terhubung langsung dengan masyarakat karenakan terbatasnya sumber daya manusia dalam melakukan deteksi wajah bermasker secara konvensional. Penggunaan masker dalam aktivitas sehari-hari merupakan salah satu protokol perlindungan diri dari COVID-19 yang wajib diterapkan. Citra wajah bermasker digunakansebagai data masukan dengan proses deteksi menggunakan Convolutional Neural Network (CNN). Deteksi citra wajah bermasker telah banyak dilakukan dengan berbagai bentuk arsitektur model, akan tetapi tidak disertai dengan penjelasan dari pemilihan parameter yang digunakan. Pembuatan model dapat menjadi efisien jika dilakukan dengan mengetahui hubungan keterkaitan antar parameter yang diterapkan. Oleh karenanya, penelitian ini dilakukan dengan tujuan untuk mengetahui hubungan keterkaitan antar parameter dalam arsitektur model CNN. Sehingga dapat dihasilkan performa terbaik dalam mendeteksi citra wajah bermasker. Hubungan keterkaitan antar parameter yang diteliti terbatas pada ukuran kernel dan jumlah kernel karena peran aktif keduanya dalam melakukan pelatihan data. Dua ukuran kernel yang digunakan yaitu 3×3 dan 5×5 dengan jumlah 3 dan 6 buah. Empat arsitektur model dibangun dengan 7 layer penyusun menggunakan kombinasi parameter tersebut. Pelatihan model dilakukan menggunakan data citra wajah bermasker dan tidak bermasker berjumlah 3150 citra dengan 15 epoch, kemudian diuji menggunakan 1350 citra. Performa terbaik diperoleh dari kombinasi parameter ukuran kernel 5×5 berjumlah 6 buah pada setiap convolutional layer. Nilai f1-score terbaik yang diperoleh sebesar 0,95 dengan akurasi 0,95 dan nilai rata-rata loss 0,1692. Berdasarkan hasil tersebut, disimpulkan bahwa parameter ukuran kernel dan jumlah kernel memiliki hubungan keterkaitan dalam menghasilkan nilai performa arsitektur model CNN terbaik untuk pendeteksian citra wajah bermasker.AbstractDetection of masked face images is needed during the COVID-19 pandemic by institutions directly connected to the community due to limited human resources to perform conventional masked face detection. Using masks in daily activities is one of the self-protective protocols from COVID-19 that must be implemented. Masked face images are used as input data, the detection process uses Convolutional Neural Network (CNN). Detection of masked face images has been carried out with various forms of model architecture but is not accompanied by an explanation of the selected parameters used. Modeling can be done efficiently by knowing the relationship between the applied parameters. Therefore, this study aims to know the relationship between parameters in the CNN model architecture so that the best performance can be produced in detecting masked face images. The study of the relationship between parameters is limited to the size of the kernel and the number of kernels because of their active role in the data training. The two kernel sizes used are 3×3 and 5×5, with a total of 3 and 6 pieces. Four model architectures are built with seven layers using a combination of these parameters. The model training was carried out using masked and maskless faces of 3150 images with 15 epochs, then tested using 1350 images. The best performance is obtained from 6 pieces of 5×5 kernel size in each convolutional layer. The best f1-score value obtained is 0.95, with an accuracy of 0.95 and an average loss value of 0.1692. Based on these results, it is concluded that the kernel size parameter and the number of kernels have a relationship in producing the best CNN architectural performance value for masked face image detection.