Claim Missing Document
Check
Articles

Found 15 Documents
Search
Journal : Mechatronics, Electrical Power, and Vehicular Technology

Object Recognition System in Remote Controlled Weapon Station using SIFT and SURF Methods Mirdanies, Midriem; Prihatmanto, Ary Setijadi; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2092.691 KB) | DOI: 10.14203/j.mev.2013.v4.99-108

Abstract

Object recognition system using computer vision that is implemented on Remote Controlled Weapon Station (RCWS) is discussed. This system will make it easier to identify and shoot targeted object automatically. Algorithm was created to recognize real time multiple objects using two methods i.e. Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF) combined with K-Nearest Neighbors (KNN) and Random Sample Consensus (RANSAC) for verification. The algorithm is designed to improve object detection to be more robust and to minimize the processing time required. Objects are registered on the system consisting of the armored personnel carrier, tanks, bus, sedan, big foot, and police jeep. In addition, object selection can use mouse to shoot another object that has not been registered on the system. Kinectâ„¢ is used to capture RGB images and to find the coordinates x, y, and z of the object. The programming language used is C with visual studio IDE 2010 and opencv libraries. Object recognition program is divided into three parts: 1) reading image from kinectâ„¢ and simulation results, 2) object recognition process, and 3) transfer of the object data to the ballistic computer. Communication between programs is performed using shared memory. The detected object data is sent to the ballistic computer via Local Area Network (LAN) using winsock for ballistic calculation, and then the motor control system moves the direction of the weapon model to the desired object. The experimental results show that the SIFT method is more suitable because more accurate and faster than SURF with the average processing time to detect one object is 430.2 ms, two object is 618.4 ms, three objects is 682.4 ms, and four objects is 756.2 ms. Object recognition program is able to recognize multi-objects and the data of the identified object can be processed by the ballistic computer in realtime.
Pengurangan Subsidi BBM dan Polusi Udara Melalui Kebijakan Program Konversi dari BBM ke BBG Untuk Kendaraan di Propinsi Jawa Barat Susanti, Vita; Hartanto, Agus; Subekti, Ridwan Arief; Saputra, Hendri Maja; Rijanto, Estiko; Hapid, Abdul
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.963 KB) | DOI: 10.14203/j.mev.2010.v1.43-52

Abstract

The  number  of  vehicle  that  use  oil  (BBM)  is  increasing  every  year  in  Indonesia  while  national  oil  reserve become smaller, so that the oil should be imported. The impact of using oil are increasing subsidy and air pollution.  Thus, it is now becoming important to replace oil with another environmentally friendly energy, one of them is gas (BBG). Based on the number of vehicle and infrastructure in gas pipeline, part of northern West Java potentially can  be  chosen  for  the  implementation  of  conversion  program  to  gas  (BBG).  The number  of  vehicle  in  potential regions  such  as  Depok,  Cibinong,  Bogor,  Bekasi,  Cikarang,  Karawang,  Purwakarta,  Cirebon,  and  Bandung  are around 875,505 units. From these data, we simulated the potential profit to be gained each year by converting 10% for the first year and increasing it to 5% for every year. By investing 3.16 trillion for conversion, 14.9 trillion can be achieved in  the  form  of  fuel  subsidy  savings.  In  addition,  emission  reduction  converted  to  a  CDM  (clean development  mechanism)  can  become  local  revenues.  Total CDM generated during 5 years predicted is of U.S $ 772,385. From this study, it can be concluded that converting oil (BBM) to gas (BBG) is highly beneficial. 
Designing optimal speed control with observer using integrated battery-electric vehicle (IBEV) model for energy efficiency Ristiana, Rina; Rohman, Arief Syaichu; Rijanto, Estiko; Purwadi, Agus; Hidayat, Egi; Machbub, Carmadi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 9, No 2 (2018)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3981.796 KB) | DOI: 10.14203/j.mev.2018.v9.89-100

Abstract

This paper develops an optimal speed control using a linear quadratic integral (LQI) control standard with/without an observer in the system based on an integrated battery-electric vehicle (IBEV) model. The IBEV model includes the dynamics of the electric motor, longitudinal vehicle, inverter, and battery. The IBEV model has one state variable of indirectly measured and unobservable, but the system is detectable. The objectives of this study were: (a) to create a speed control that gets the exact solution for a system with one indirect measurement and unobservable state variable; and (b) to create a speed control that has the potential to make a more efficient energy system. A full state feedback LQI controller without an observer is used as a benchmark. Two output feedback LQI controllers are designed; including one controller uses an order-4 observer and the other uses an order-5 observer. The order-4 observer does not include the battery state of charge as an observer state whereas the order-5 observer is designed by making all the state variable as the observer state and using the battery state of charge as an additional system output. An electric passenger minibus for public transport with 1500 kg weight was used as the vehicle model. Simulations were performed when the vehicle moves in a flat surface with the increased speed from stationary to 60 km/h and moves according to standard NEDC driving profile. The simulation results showed that both the output feedback LQI controllers provided similar speed performance as compared to the full state feedback LQI controller. However, the output feedback LQI controller with the order-5 observer consumed less energy than with the order-4 observer, which is about 10% for NEDC driving profile and 12% for a flat surface. It can be concluded that the LQI controller with order-5 observer gives better energy efficiency than the LQI controller with order-4 observer
DC Brushless Motor Control Design and Preliminary Testing for Independent 4-Wheel Drive Rev-11 Robotic Platform Saputra, Roni Permana; Ardiansyah, Rizqi Andry; Mirdanies, Midriem; Santoso, Arif; Nugraha, Aditya Sukma; Muqorobin, Anwar; Saputra, Hendri Maja; Susanti, Vita; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 2 (2011)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (714.52 KB) | DOI: 10.14203/j.mev.2011.v2.85-94

Abstract

This paper discusses the design of control system for brushless DC motor using microcontroller ATMega 16 that will be applied to an independent 4-wheel drive Mobile Robot LIPI version 2 (REV-11). The control system consists of two parts which are brushless DC motor control module and supervisory control module that coordinates the desired command to the motor control module. To control the REV-11 platform, supervisory control transmit the reference data of speed and direction of motor to control the speed and direction of each actuator on the platform REV-11. From the test results it is concluded that the designed control system work properly to coordinate and control the speed and direction of motion of the actuator motor REV-11 platform. 
Accuracy analysis of geometrical and numerical approaches for two degrees of freedom robot manipulator Saputra, Hendri Maja; Mirdanies, Midriem; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 7, No 2 (2016)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2319.664 KB) | DOI: 10.14203/j.mev.2016.v7.105-112

Abstract

Analysis of algorithms to determine the accuracy of aiming direction using two inverse kinematic approaches i.e. geometric and numeric has been done. The best method needs to be specified to precisely and accurately control the aiming direction of a two degrees of freedom (TDOF) manipulator. The manipulator degrees of freedom are azimuth (Az) and elevation (El) angles. A program has been made using C language to implement the algorithm. Analysis of the two algorithms was done using statistical approach and circular error probable (CEP). The research proves that accuracy percentage of numerical method is better than geometrical method, those are 98.63% and 98.55%, respectively. Based on the experiment results, the numerical approach is the right algorithm to be applied in the TDOF robot manipulator.
IMU Application in Measurement of Vehicle Position and Orientation for Controlling a Pan-Tilt Mechanism Saputra, Hendri Maja; Abidin, Zainal; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 1 (2013)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1030.099 KB) | DOI: 10.14203/j.mev.2013.v4.41-50

Abstract

This paper describes a modeling and designing of inertial sensor using Inertial Measurement Unit (IMU) to measure the position and orientation of a vehicle motion. Sensor modeling is used to derive the vehicle attitude models where the sensor is attached while the sensor design is used to obtain the data as the input to control the angles of a pan-tilt mechanism with 2 degrees of freedom. Inertial sensor Phidget Spatial 3/3/3, which is a combination of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer, is used as the research object. Software for reading the sensor was made by using Matlabâ„¢. The result shows that the software can be applied to the sensor in the real-time reading process. The sensor readings should consider several things i.e. (a) sampling time should not be less than 32 ms and (b) deviation ratio between measurement noise (r) and process noise (q) for the parameters of Kalman filter is 1:5 (i.e. r = 0.08 and q = 0.4).
Design of Vibration Absorber using Spring and Rubber for Armored Vehicle 5.56 mm Caliber Rifle Nugraha, Aditya Sukma; Budiwantoro, Bagus; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 2 (2014)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1898.412 KB) | DOI: 10.14203/j.mev.2014.v5.75-82

Abstract

This paper presents a design of vibration absorber using spring and rubber for 5.56 mm caliber rifle armored vehicle. Such a rifle is used in a Remote-Controlled Weapon System (RCWS) or a turret where it is fixed using a two degree of freedom pan-tilt mechanism. A half car lumped mass dynamic model of armored vehicles was derived. Numerical simulation was conducted using fourth order Runge Kutta method. Various types of vibration absorbers using spring and rubber with different configurations are installed in the elevation element. Vibration effects on horizontal direction, vertical direction and angular deviation of the elevation element was investigated. Three modes of fire were applied i.e. single fire, semi-automatic fire and automatic fire. From simulation results, it was concluded that the parallel configuration of damping rubber type 3, which has stiffness of 980,356.04 (N/m2) and damping coefficient of 107.37 (N.s/m), and Carbon steel spring whose stiffness coefficient is 5.547 x 106 (N/m2) provides the best vibration absorption. 
Comparison between RLS-GA and RLS-PSO for Li-ion battery SOC and SOH estimation: a simulation study Rozaqi, Latif; Rijanto, Estiko; Kanarachos, Stratis
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 8, No 1 (2017)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (226.024 KB) | DOI: 10.14203/j.mev.2017.v8.40-49

Abstract

This paper proposes a new method of concurrent SOC and SOH estimation using a combination of recursive least square (RLS) algorithm and particle swarm optimization (PSO). The RLS algorithm is equipped with multiple fixed forgetting factors (MFFF) which are optimized by PSO. The performance of the hybrid RLS-PSO is compared with the similar RLS which is optimized by single objective genetic algorithms (SOGA) as well as multi-objectives genetic algorithm (MOGA). Open circuit voltage (OCV) is treated as a parameter to be estimated at the same timewith internal resistance. Urban Dynamometer Driving Schedule (UDDS) is used as the input data. Simulation results show that the hybrid RLS-PSO algorithm provides little better performance than the hybrid RLS-SOGA algorithm in terms of mean square error (MSE) and a number of iteration. On the other hand, MOGA provides Pareto front containing optimum solutions where a specific solution can be selected to have OCV MSE performance as good as PSO.
Algorithm of 32-bit Data Transmission Among Microcontrollers Through an 8-bit Port Mirdanies, Midriem; Saputra, Hendri Maja; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 2 (2015)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (458.849 KB) | DOI: 10.14203/j.mev.2015.v6.75-82

Abstract

This paper proposes an algorithm for 32-bit data transmission among microcontrollers through one 8-bit port. This method was motivated by a need to overcome limitations of microcontroller I/O as well as to fulfill the requirement of data transmission which is more than 10 bits. In this paper, the use of an 8-bit port has been optimized for 32-bit data transmission using unsigned long integer, long integer, and float types. Thirty-two bit data is extracted intobinary number, then sent through a series of 8-bit ports by transmitter microcontroller. At receiver microcontroller, the binary data received through 8-bit port is reconverted into 32 bits with the same data type. The algorithm has been implemented and tested using C language in ATMega32A microcontroller. Experiments have been done using two microcontrollers as well as four microcontrollers in the parallel, tree, and series connections. Based on the experiments, it is known that the data transmitted can be accurately received without data loss. Maximum transmission times among two microcontrollers for unsigned long integer, long integer, and float are 630 μs, 1,880 μs, and 7,830 μs, respectively. Maximum transmission times using four microcontrollers in parallel connection are the same as those using two microcontrollers, while in series connection are 1,930 μs for unsigned long integer, 5,640 μs for long integer, and 23,540 μs for float. The maximum transmission times of tree connection is close to those of the parallel connection. These results prove that the algorithm works well.
A Review of Atomic Layer Deposition for Nanoscale Devices Riyanto, Edy; Rijanto, Estiko; Prawara, Budi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 2 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (334.963 KB) | DOI: 10.14203/j.mev.2012.v3.65-72

Abstract

Atomic layer deposition (ALD) is a thin film growth technique that utilizes alternating, self-saturation chemical reactions between gaseous precursors to achieve a deposited nanoscale layers. It has recently become a subject of great interest for ultrathin film deposition in many various applications such as microelectronics, photovoltaic, dynamic random access memory (DRAM), and microelectromechanic system (MEMS). By using ALD, the conformability and extreme uniformity of layers can be achieved in low temperature process. It facilitates to be deposited onto the surface in many variety substrates that have low melting temperature. Eventually it has advantages on the contribution to the wider nanodevices.