Claim Missing Document
Check
Articles

Found 4 Documents
Search

Algoritma Smith-Waterman Untuk Mengidentifikasi Kemiripan Judul Proyek Mahasiswa Andre Pratama; Nababan, Junerdi; Salsabila, Nadiyah Shofa
JIKTEKS : Jurnal Ilmu Komputer dan Teknologi Informasi Vol. 3 No. 01 (2024): Desember
Publisher : Faatuatua Media Karya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70404/jikteks.v3i01.125

Abstract

Plagiarisme dalam lingkungan akademik menjadi masalah yang signifikan, terutama dalam pengajuan judul proyek oleh mahasiswa. Untuk mengidentifikasi kemiripan judul proyek guna mencegah plagiarisme, penelitian ini menggunakan algoritma Smith-Waterman. Algoritma ini, yang awalnya digunakan dalam bioinformatika, diaplikasikan untuk membandingkan teks dengan pendekatan penyelarasan lokal. Proses penelitian meliputi beberapa tahapan seperti pengumpulan data, preprocessing teks dengan case folding, stemming, dan tokenizing sebelum penerapan algoritma Smith-Waterman. Hasil pengujian menunjukkan bahwa algoritma ini efektif dalam mendeteksi kemiripan antara judul proyek, dengan persentase kemiripan yang bervariasi. Penelitian ini diharapkan dapat menjadi langkah awal dalam pengembangan sistem deteksi plagiarisme yang lebih akurat di lingkungan akademik.
PERBANDINGAN PREDIKSI POLUSI UDARA MENGGUNAKAN LSTM DAN BILSTM Pratama, Andre; Sembiring, Asha; Nababan, Junerdi; Zarkasyi, Muhammad Imam; Rahayu, Novriza
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.3596

Abstract

Abstract: Air pollution has become a serious problem in densely populated urban areas such as DKI Jakarta. To mitigate its negative impacts, an accurate air pollution prediction system is necessary. This study compares the performance of two deep learning models, Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM), in predicting PM10 concentration using air quality data from DKI Jakarta between 2016 and 2019. The research process includes data collection and preprocessing, model training, and model evaluation. Both models were tested with various parameters such as the number of hidden neurons, dropout rate, epochs, and batch size. The results consistently show that BiLSTM outperforms LSTM, achieving lower Root Mean Square Error (RMSE) values across 54 testing scenarios. The best BiLSTM configuration, with 64 hidden neurons, 0.2 dropout rate, 50 epochs, and batch size 16, yielded an RMSE of 9.311401. Meanwhile, the best LSTM configuration, with 128 hidden neurons, 0.1 dropout rate, 100 epochs, and batch size 16, produced an RMSE of 9.330554. The advantage of BiLSTM lies in its ability to process data bidirectionally, making it more effective in capturing temporal patterns for air pollution prediction compared to LSTM. Keywords: air pollution prediction, pollutant, deep learning, LSTM, BiLSTM Abstrak: Pencemaran udara menjadi masalah serius di wilayah perkotaan padat seperti DKI Jakarta. Untuk mengurangi dampak negatifnya, diperlukan sistem prediksi polusi udara yang akurat. Penelitian ini membandingkan performa dua model deep learning, Long Short-Term Memory (LSTM) dan Bidirectional Long Short-Term Memory (BiLSTM), dalam memprediksi konsentrasi PM10 menggunakan data kualitas udara DKI Jakarta tahun 2016-2019. Proses penelitian mencakup pengumpulan dan praproses data, pelatihan model, serta evaluasi model. Kedua model diuji dengan berbagai parameter seperti jumlah hidden neuron, dropout rate, epoch, dan batch size. Hasil menunjukkan BiLSTM lebih unggul secara konsisten dengan nilai Root Mean Square Error (RMSE) lebih rendah melalui 54 skenario pengujian. Konfigurasi terbaik BiLSTM menggunakan 64 hidden neuron, dropout rate 0.2, 50 epoch, dan batch size 16 menghasilkan RMSE 9.311401. Sedangkan konfigurasi LSTM terbaik pada 128 hidden neuron, dropout rate 0.1, 100 epoch, dan batch size 16 menghasilkan RMSE 9.330554. Keunggulan BiLSTM terletak pada kemampuannya memproses data dua arah, sehingga lebih efektif dalam menangkap pola temporal untuk prediksi polusi udara dibandingkan LSTM.  Kata kunci: prediksi polusi udara, polutan, deep learning, LSTM, BiLSTM
Pelatihan Media Sosial Bilingual untuk Promosi Berkelanjutan: Studi Kasus Karang Taruna Dwikora Medan: Bilingual Social Media Training for Sustainable Promotion: A Community Service Program for Karang Taruna Dwikora Medan Ananda, Zhafran Fatih; Aurlani, Febry; Pratama, Andre
PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat Vol. 10 No. 9 (2025): PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat
Publisher : Institute for Research and Community Services Universitas Muhammadiyah Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33084/pengabdianmu.v10i9.9596

Abstract

Social media has become a strategic medium in modern communication, including for the sustainable promotion of products and services. Recognizing the importance of practical communication skills on digital platforms, this community service activity aimed to provide training for the Karang Taruna Dwikora Medan on socialization of using English and Indonesian for sustainable promotion on social media. The training was conducted over two days using a participatory approach, involving presentations, discussions, and hands-on practice. The materials covered include using social media as a promotional tool, techniques for creating sustainable content, and language strategies such as code-switching, bilingual hashtags, and content adaptation based on the platform. This activity showed a significant increase in participants' understanding and ability to design engaging and relevant promotional content for local and international audiences, with an 85% improvement in knowledge based on pretest and posttest evaluations. The participants' enthusiasm and active participation demonstrated this program's success in raising awareness of the importance of adaptive and inclusive communication strategies in the digital age. This activity made a real contribution to youth empowerment by mastering digital communication skills oriented toward sustainability.
Applying BERT Model for Early Detection of Mental Disorders Based on Text Input Jimmy Sunjaya; Jefferson Ong; Rezky Firmansyah Ziliwu; Henny Risni; Andre Pratama
Jurnal Ilmiah Teknik Informatika dan Komunikasi Vol. 5 No. 2 (2025): Juli: Jurnal Ilmiah Teknik Informatika dan Komunikasi
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juitik.v5i2.1251

Abstract

In today's digital era, awareness of mental health issues is growing significantly. Many individuals are now more open about sharing their psychological conditions through written texts on social media, forums, and surveys. This phenomenon presents an opportunity to leverage technology for the automatic detection of mental disorders through text analysis. This study aims to implement the Bidirectional Encoder Representations from Transformers(BERT) model to identify mental health conditions such as depression, bipolar disorder, anxiety, suicidal tendencies, and others. The dataset was sourced from Kaggle and underwent several preprocessing stages, including data cleaning, tokenization, and text classification model training. This BERT model achieved strong performance, with an accuracy of 91% and an average F1-Score of 0.91. These results demonstrate the model's effectiveness in identifying various psychological expressions. The findings highlight the potential for developing early detection systems that are faster, more objective, and widely accessible. However, this study acknowledges limitations in dataset diversity, suggesting future work to incorporate more varied data sources and explore other NLP models to enhance detection accuracy and coverage.