Claim Missing Document
Check
Articles

Found 14 Documents
Search

Breast cancer identification using a hybrid machine learning system Arifin, Toni; Agung, Ignatius Wiseto Prasetyo; Junianto, Erfian; Agustin, Dari Dianata; Wibowo, Ilham Rachmat; Rachman, Rizal
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp3928-3937

Abstract

Breast cancer remains one of the most prevalent malignancies among women and is frequently diagnosed at an advanced stage. Early detection is critical to improving patient prognosis and survival rates. Messenger ribonucleic acid (mRNA) gene expression data, which captures the molecular alterations in cancer cells, offers a promising avenue for enhancing diagnostic accuracy. The objective of this study is to develop a machine learning-based model for breast cancer detection using mRNA gene expression profiles. To achieve this, we implemented a hybrid machine learning system (HMLS) that integrates classification algorithms with feature selection and extraction techniques. This approach enables the effective handling of heterogeneous and high-dimensional genomic data, such as mRNA expression datasets, while simultaneously reducing dimensionality without sacrificing critical information. The classification algorithms applied in this study include support vector machine (SVM), random forest (RF), naïve Bayes (NB), k-nearest neighbors (KNN), extra trees classifier (ETC), and logistic regression (LR). Feature selection was conducted using analysis of variance (ANOVA), mutual information (MI), ETC, LR, whereas principal component analysis (PCA) was employed for feature extraction. The performance of the proposed model was evaluated using standard metrics, including recall, F1-score, and accuracy. Experimental results demonstrate that the combination of the SVM classifier with MI feature selection outperformed other configurations and conventional machine learning approaches, achieving a classification accuracy of 99.4%.
Exploring the Impact of Fear of Missing Out on Perceived Ease of Use and Usage Decisions in Digital Platforms Zoraifi, Renata; Agung, Ignatius Wiseto Prasetyo; Arifin, Samsul
JOURNAL OF ADVANCED STUDIES IN MANAGEMENT Vol. 1 No. 2 (2024): November 2024
Publisher : Magister Manajemen of Universitas Islam Nahdlatul Ulama Jepara

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research endeavors to examine the mediating function of perceived ease of use within the context of the relationship between Fear of Missing Out (FOMO) and usage decisions among Generation Z users of digital platforms. Employing a quantitative research design, a total of 125 participants were engaged through an online survey instrument. The collected data were subjected to analysis utilizing Partial Least Squares Structural Equation Modeling (PLS-SEM). The results indicate that FOMO exerts a significant impact on usage decisions, both directly and indirectly through perceived ease of use, underscoring the critical role of user perception in the adoption of technology. These findings enhance the comprehension of the psychological and technological determinants influencing decision-making and offer practical recommendations for platform developers aiming to engage Generation Z.
Pengaruh E-Service Quality dan E-Trust terhadap E-Satisfaction dan Dampaknya pada E-Repurchase Intention Pengguna Layanan Konsultasi Media Online Khrisna Ayuningtias, Tyagita; Erliany Syaodih; Wiseto P. Agung
Da'watuna: Journal of Communication and Islamic Broadcasting Vol. 4 No. 3 (2024): Da'watuna: Journal of Communication and Islamic Broadcasting (In Press)
Publisher : Intitut Agama Islam Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/dawatuna.v4i3.1163

Abstract

Apps for telemedicine are becoming increasingly popular as a result of the COVID-19 outbreak. Telemedicine thus competes with other providers to meet patient demand. Many tactics are used to overcome this, such as providing confidence and quality patients. The purpose of this study is to analyze the effect of E-Service Quality and E-Trust on E-Satisfaction and its impact on E-Repurchase Intention on users of Online Medical Consultation Services. This type of research is quantitative. The sample of this study amounted to 100 respondents who had an Online Medical Consultation Service application on a mobile phone and had at least consulted through the application or website at least once. The analysis method used is path analysis. The results of the study show that there is a direct influence between the variables of E-service Quality on E-Satisfaction in users of online medical consultation services. There is a direct influence between E-Trust variables on E-Satisfaction in users of online medical consultation services. There is a direct influence between the variables E-service Quality and E-Trust on E-Satisfaction in users of online consulting services. There is a direct influence between the variables E-service Quality, E-Trust, and E-Satisfaction, on E-Repurchase Intention in users of online medical consultation services. There is an Effect of E-service Quality and E-Trust on E-Satisfaction of 9.9% while the remaining 90.1% (100% - 9.9%) is contributed by other factors. There is an effect of E-service Quality, E-Trust, and E-Satisfaction on E-Repurchase Intention of 34% while the remaining 66% (100% - 34%) is contributed by other factors.
EVALUASI PENERAPAN MODEL EARLY WARNING SCORE DALAM MENDUKUNG MUTU PELAYANAN RAWAT INAP RSUD “X” KABUPATEN SUKABUMI Tresna Ridha Nurramadhani; Rohendi, Rohendi; Wiseto P. Agung
Journal of Innovation Research and Knowledge Vol. 5 No. 7 (2025): Desember 2025
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53625/jirk.v5i7.11809

Abstract

Peningkatan mutu pelayanan kesehatan di rumah sakit sangat bergantung pada kemampuan tenaga medis dalam mendeteksi dini kondisi kritis pasien. Early Warning Score (EWS) merupakan sistem skoring yang digunakan untuk memantau tanda vital pasien secara sistematis, sehingga dapat mencegah keterlambatan penanganan. Namun, implementasi EWS di rumah sakit daerah sering kali menghadapi kendala yang berdampak pada efektivitasnya. Penelitian ini bertujuan untuk mengevaluasi penerapan EWS di RSUD “X” Kabupaten Sukabumi, mengidentifikasi hambatan yang dihadapi tenaga kesehatan, serta memberikan rekomendasi strategis untuk optimalisasi sistem. Penelitian menggunakan metode campuran (mixed methods) dengan desain sequential explanatory. Data kualitatif diperoleh melalui wawancara mendalam dan observasi terhadap perawat, dokter, serta tim manajemen, sedangkan data kuantitatif dikumpulkan melalui kuesioner dan analisis rekam medis pasien. Hasil penelitian menunjukkan bahwa sebagian besar tenaga kesehatan memahami manfaat EWS sebagai alat deteksi dini. Meskipun demikian, tingkat kepatuhan dalam pencatatan dan eskalasi klinis masih belum optimal. Hambatan utama yang ditemukan meliputi keterbatasan sumber daya manusia, sarana-prasarana monitoring, sistem supervisi dan audit yang belum konsisten, beban kerja tinggi, serta budaya keselamatan pasien yang masih lemah.Berdasarkan temuan tersebut, disarankan beberapa langkah perbaikan, antara lain pelatihan berkesinambungan berbasis simulasi, penguatan supervisi klinis dan monitoring kepatuhan, digitalisasi formulir EWS yang terintegrasi dengan rekam medis, penyesuaian rasio perawat-pasien, serta pengembangan budaya keselamatan pasien melalui komunikasi dan dukungan manajemen. Dengan strategi komprehensif ini, penerapan EWS di RSUD “X” diharapkan lebih efektif dalam meningkatkan mutu pelayanan dan keselamatan pasien.