Arwin Sabar
Kelompok Keahlian Pengelolaan Lingkungan,Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung, Jl. Ganesa No 10 Bandung, 40132.

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Forum Geografi

Management Optimization of Saguling Reservoir with Bellman Dynamic Programming and “Du Couloir” Iterative Method Marselina, Mariana; Sabar, Arwin; Salami, Indah R S; Marganingrum, Dyah
Forum Geografi Vol 30, No 1 (2016): July 2016
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The increasingly growth of population and industry sector have lead to an enhanced demand for electrical energy. One of the electricity providers in the area of Java-Madura Bali (Jamali) is Saguling Reservoir. Saguling Reservoir is one of the three reservoirs that stem the flow of Citarum River in advance of to Jatiluhur and Cirata Reservoir. The average electricity production of Saguling Reservoir was 2,334,318.138 MWh/year in the period of 1986-2014. The water intake of Saguling Reservoir is the upstream Citarum Watershed with an area of 2340.88 km2 which also serves as the irrigation, inland fisheries, recreation, and other activities. An effort to improve the function of Saguling Reservoir in producing electrical energy is by optimizing the reservoir management. The optimization of Saguling Reservoir management in this study refers to Government Regulation No. 37/2010 on Dam/Reservoir Article 44 which states that the system of reservoir management consisting of the operation system in dry years, normal years, and wet years. In this research, the determination of the trajectory guideline in Saguling operation was divided in dry, normal and wet years. Trajectory guideline was conducted based on the electricity price of turbine inflow that various in every month. The determination of the trajectory guideline in various electricity price was done by using Program Dynamic Bellman (PD Bellman) and “Du Couloir” iterative method which the objective to optimize the gain from electricity production. and “Du Couloir” iterative method was development of PD Bellman that can calculate the value of gain with a smaller discretization until 0,1 juta m3 effectively where PD Bellman just calculate until 10 million m3.  Smaller discretization can give maximum benefit from electricity production and the trajectory guideline will be closer to trajectory actual so optimization of Saguling operation will be achieved.
Rainfall Variability and Landuse Conversion Impacts to Sensitivity of Citarum River Flow Marganingrum, Dyah; Sabar, Arwin; Roosmini, Dwina; Pradono, P
Forum Geografi Vol 27, No 1 (2013): July 2013
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v27i1.5074

Abstract

The objective of this study is to determine the sensitivity of Citarum river flow to climate change and land conversion. It will provide the flow information that required in the water resources sustainability. Saguling reservoir is one of the strategic reservoirs, which 75% water is coming from the inflow of Upper Citarum measured at Nanjung station. Climate variability was identified as rainfall variability. Sensitivity was calculated as the elasticity value of discharge using three-variate model of statistical approach. The landuse conversion was calculated used GIS at 1994 and 2004. The results showed that elasticity at the Nanjung station and Saguling station decreased from 1.59 and 1.02 to 0.68 and 0.62 respectively. The decreasing occurred in the before the dam was built period (1950-1980) to the after reservoirs operated period (1986-2008). This value indicates that: 1) Citarum river flow is more sensitive to rainfall variability that recorded at Nanjung station than Saguling station, 2) rainfall character is more difficult to predict. The landuse analysis shows that forest area decrease to ± 27% and built up area increased to ± 26%. Those implied a minimum rainfall reduction to± 8% and minimum flow to ± 46%. Those were caused by land conversion and describing that the vegetation have function to maintain the base flow for sustainable water resource infrastructure.
Management Optimization of Saguling Reservoir with Bellman Dynamic Programming and “Du Couloir” Iterative Method Marselina, Mariana; Sabar, Arwin; Salami, Indah R S; Marganingrum, Dyah
Forum Geografi Vol 30, No 1 (2016): July 2016
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v30i1.1682

Abstract

The increasingly growth of population and industry sector have lead to an enhanced demand for electrical energy. One of the electricity providers in the area of Java-Madura Bali (Jamali) is Saguling Reservoir. Saguling Reservoir is one of the three reservoirs that stem the flow of Citarum River in advance of to Jatiluhur and Cirata Reservoir. The average electricity production of Saguling Reservoir was 2,334,318.138 MWh/year in the period of 1986-2014. The water intake of Saguling Reservoir is the upstream Citarum Watershed with an area of 2340.88 km2 which also serves as the irrigation, inland fisheries, recreation, and other activities. An effort to improve the function of Saguling Reservoir in producing electrical energy is by optimizing the reservoir management. The optimization of Saguling Reservoir management in this study refers to Government Regulation No. 37/2010 on Dam/Reservoir Article 44 which states that the system of reservoir management consisting of the operation system in dry years, normal years, and wet years. In this research, the determination of the trajectory guideline in Saguling operation was divided in dry, normal and wet years. Trajectory guideline was conducted based on the electricity price of turbine inflow that various in every month. The determination of the trajectory guideline in various electricity price was done by using Program Dynamic Bellman (PD Bellman) and “Du Couloir” iterative method which the objective to optimize the gain from electricity production. and “Du Couloir” iterative method was development of PD Bellman that can calculate the value of gain with a smaller discretization until 0,1 juta m3 effectively where PD Bellman just calculate until 10 million m3.  Smaller discretization can give maximum benefit from electricity production and the trajectory guideline will be closer to trajectory actual so optimization of Saguling operation will be achieved.