p-Index From 2021 - 2026
0.659
P-Index
This Author published in this journals
All Journal Algor RUBINSTEIN
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : RUBINSTEIN

Analisis dan Perancangan Sistem Informasi Pengawasan Manajemen Mutu Sumber Daya Manusia Hariyanto, Susanto; Indah Fenriana; Desiyanna Lasut; Yusuf Kurnia; Candika Kirana Ariya Putri
RUBINSTEIN Vol. 2 No. 2 (2024): RUBINSTEIN (juRnal mUltidisiplin BIsNis Sains TEknologI & humaNiora)
Publisher : LP3kM Buddhi Dharma University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31253/rubin.v2i2.3101

Abstract

Penelitian ini bertujuan untuk menganalisis dan merancang sistem informasi yang efektif guna meningkatkan efisiensi pengawasan manajemen mutu sumber daya manusia (SDM) serta mempercepat proses pengambilan keputusan di departemen Human Resource Development (HRD). Implementasi sistem ini terbukti mampu meningkatkan akurasi data, mengurangi waktu yang dibutuhkan untuk mengumpulkan data dan menyusun laporan, serta mempercepat akses informasi. Dengan adanya otomatisasi dan penyediaan data real-time, tugas-tugas administratif dapat dialihkan ke kegiatan yang lebih strategis, meningkatkan efisiensi operasional HRD secara signifikan. Selain itu, sistem ini memungkinkan manajer HRD untuk mengambil keputusan dengan lebih cepat dan tepat dalam lingkungan bisnis yang dinamis, memberikan keunggulan kompetitif bagi perusahaan. Penelitian ini juga menunjukkan bahwa manajemen mutu yang efektif dan kualitas SDM yang terjaga berdampak positif pada kepuasan dan kepercayaan pelanggan, yang merupakan aset berharga dalam persaingan pasar. Melalui metode evaluasi kinerja yang terstruktur, pemanfaatan data real-time, dan sistem pelaporan interaktif, departemen HRD dapat mengelola SDM dengan lebih baik dan akurat. Hasil penelitian ini diharapkan memberikan kontribusi signifikan dalam bidang manajemen SDM dan teknologi informasi, serta menjadi referensi bagi pengembangan sistem serupa di masa mendatang. Implementasi sistem ini tidak hanya meningkatkan operasional internal, tetapi juga memperkuat posisi dan reputasi perusahaan di pasar melalui peningkatan kualitas SDM dan produk yang dihasilkan.
Comparative Analysis of Support Vector Machine, Decision Tree, and Naive Bayes in Evaluating Machine Learning Effectiveness Hariyanto, Susanto; Indah Fenriana; Desiyanna Lasut; Febrian
RUBINSTEIN Vol. 4 No. 1 (2025): RUBINSTEIN (juRnal mUltidisiplin BIsNis Sains TEknologI & humaNiora)
Publisher : LP3kM Buddhi Dharma University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31253/rubin.v4i1.4041

Abstract

This study aims to analyze and compare the performance of three widely used machine learning algorithms for data classification: Support Vector Machine (SVM), Decision Tree, and Naïve Bayes. These algorithms employ distinct approaches in handling data, making it essential to evaluate their effectiveness and efficiency in classification tasks. In the digital era characterized by massive data growth, the selection of an appropriate classification algorithm is a critical determinant for accurate and efficient data-driven decision-making. The main contribution of this research is to provide a comprehensive understanding of the relative strengths and limitations of each algorithm under varying data conditions. This study not only highlights comparative performance outcomes but also emphasizes practical implications for researchers and data science practitioners in selecting algorithms suited to specific needs. In doing so, it addresses a research gap concerning integrated evaluations of data characteristics and algorithmic performance. The methodology adopts a quantitative approach through computational experiments using standardized datasets (Titanic, Spam Email, and Wine). The datasets were divided into training and testing sets and analyzed using Python with the scikit-learn library. Performance evaluation was conducted based on accuracy, precision, recall, and F1-score, validated through cross-validation techniques to ensure reliability of results. The findings indicate that SVM outperforms in terms of accuracy and recall on complex datasets, Naïve Bayes is more efficient in computational time particularly for text data, while Decision Tree stands out for model interpretability despite slightly lower accuracy. These results are expected to serve as a practical reference for selecting suitable algorithms according to data characteristics, thereby supporting more targeted and intelligent modeling strategies in the era of digital transformation.