Claim Missing Document
Check
Articles

Found 24 Documents
Search

Analytic Predictive of Crescent Sighting Using Astronomical Data-Based Multinomial Logistic Regression in Indonesia Sugiharto, Tomy Ivan; Hariyadi, Mokhamad Amin; Chamidy, Totok; Santoso, Irwan Budi; Crysdian, Cahyo; Zarkoni, Ahmad; Ma'muri, Ma'muri; Syahreni, Syahreni
G-Tech: Jurnal Teknologi Terapan Vol 9 No 4 (2025): G-Tech, Vol. 9 No. 4 October 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/g-tech.v9i4.8246

Abstract

This research aims to develop and validate a sophisticated crescent visibility classification model in Indonesia. Multinomial Logistic Regression (MLR) was chosen for its capability to provide clear model interpretation through coefficient analysis. Utilizing comprehensive observational data (2021-2025) from Indonesia's Meteorology, Climatology, and Geophysics Agency (BMKG), the study comprised 2210 data points. The model classifies visibility into three categories (Dark, Faint, and Bright) based on defined elongation thresholds. The final predictor variables used were azimuth difference, moon altitude, and elongation. Analysis of the optimal model's (Model A3) coefficients revealed azimuth difference and elongation as the most dominant predictors, marked by exceptionally large positive coefficients (12.050 and 12.018, respectively) for classifying the 'Faint' category. After data preprocessing and systematic optimization ('saga' solver, L2 penalty), the optimal model (A3, C=100) demonstrated exceptional performance with an outstanding F1-Score of 99.10%. These findings strongly validate MLR's effectiveness for elongation-based crescent visibility classification and highlight its substantial potential as a reliable foundation for objective decision-making.
Clustering Gempabumi di Wilayah Regional VII Menggunakan Pendekatan DBSCAN Arafat, Ihsan Bagus Fahad; Hariyadi, Mokhamad Amin; Santoso, Irwan Budi; Crysdian, Cahyo
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106918

Abstract

Wilayah Regional VII meliputi Jawa Tengah, Yogyakarta, dan Jawa Timur merupakan wilayah tektonik yang aktif karena terletak di wilayah zona subduksi lempeng Indo-Australia dan Eurasia serta terdapat beberapa patahan aktif di daratan. Oleh karena itu, perlu dilakukan klasifikasi gempabumi untuk memetakan zona rawan gempabumi berdasarkan sumbernya di wilayah Regional VII berdasarkan kesamaan atribut salah satunya adalah berdasarkan karakteristik gempabumi dari sumber yang sama. Pada penelitian ini digunakan pendekatan algoritma Unsupervised Learning Clustering berbasis kepadatan yaitu, Density Based Spatial Clustering of Application with Noise atau DBSCAN, algoritma ini membutuhkan parameter input epsilon (ε) dan MinPts. Data yang digunakan pada penelitian ini adalah data gempabumi wilayah Regional VII tahun 2017 hingga 2021 yang diperoleh dari BMKG. Selanjutnya, proses clustering dilakukan dengan membagi data gempabumi berdasarkan periode yaitu periode tahunan dan periode lima tahun dengan tujuan untuk mengetahui pola cluster berdasarkan periode waktu. Hasil yang terbentuk selanjutnya dievaluasi menggunakan Silhouette Coefficient serta dibandingkan dengan peta Seismisitas Jawa yang telah ada dari katalog PuSGeN 2017. Hasil clustering menggunakan DBSCAN diperoleh jumlah cluster sebanyak 2 hingga 6 cluster dengan nilai Silhouette Coefficient terendah sebesar 0.270 untuk periode T5_2017-2021 dan tertinggi sebesar 0.499 untuk periode T1_2020. AbstractRegional VII area covering Central Java, Yogyakarta and East Java is an active tectonic region because it is located in the subduction zone of the Indo-Australian and Eurasian plates and there are several active faults on land. Therefore, it is necessary to classify earthquakes to map earthquake-prone zones based on their sources in Regional VII area based on the similarity of attibutes, based on the characteristics of earthquakes from the same source. In this study, a density-based Unsupervised Learning Clustering algorithm approach was used namely, Density Based Spatial Clustering of Application with Noise or DBSCAN, this algorithm requires the input parameters epsilon (ε) and MinPts. The data used in this study are earthquake data for Regional VII from 2017 to 2021 obtained from the BMKG. Then, the clustering process is carried out by dividing earthquake data based on the period, namely the annual period and the five-year period with the aim of knowing the pattern of cluster based on the time period. The results are then evaluated using the Sillhouette Coefficient and compared with the existing Java Seismicity map from the 2017 PuSGeN catalog. Clustering results using DBSCAN obtained a number of clusters of 2 to 6 clusters with the lowest Silhouette Coefficient value is 0.270 for the T5_2017-2021 period and the highest is 0.499 for the T1_2020 period.  
Rainfall Prediction Using Attention-Based LSTM Architecture Romadhani, Ahmad; Santoso, Irwan Budi; Crysdian, Cahyo
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8727

Abstract

This study addresses the challenge of accurately predicting rainfall in regions with complex climate dynamics, such as Malang Regency, East Java. It evaluates the performance of a Long Short-Term Memory (LSTM) model enhanced with the Bahdanau Attention Mechanism, comparing it with a Standard LSTM model in forecasting daily rainfall based on historical weather parameters including average temperature, relative humidity, sunshine duration, and wind speed. Using daily data from BMKG covering 2000 to 2023, both models underwent a structured machine learning process including data preprocessing, feature selection, model training, and evaluation. The Attention-Based LSTM consistently outperformed the Standard LSTM, particularly in handling rainfall anomalies, achieving an MSE of 0.00800 and RMSE of 0.08948, compared to 0.00817 and 0.09039 respectively for the Standard LSTM. These results demonstrate that integrating Bahdanau Attention improves the model’s focus on relevant temporal features, enhancing prediction accuracy and robustness. The architecture consisting of two LSTM cells combined with the attention mechanism effectively captures complex sequential patterns that the standard model tends to overlook. This research highlights the potential of attention mechanisms in time series weather prediction, contributing to more reliable early warning systems, adaptive agricultural strategies, and disaster risk reduction frameworks. Future work could explore hybrid models or incorporate additional weather features to further improve performance and generalization.
PEMETAAN SENTIMEN MASYARAKAT TERHADAP PILPRES 2024 DENGAN ALGORITMA SELF-ORGANIZING MAP Yuwono, Dwi Purbo; Santoso , Irwan Budi; Kusumawati, Ririen
Jurnal Review Pendidikan dan Pengajaran Vol. 7 No. 3 (2024): Volume 7 No 3 Tahun 2024
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jrpp.v7i3.28830

Abstract

Pemilihan Umum (PEMILU) adalah salah satu cara untuk memilih presiden, kepala daerah, dan anggota parlemen yang berlangsung setiap lima tahun sekali. Dalam memasuki tahun- tahun politik saat ini akan banyak bertebaran informasi dan komentar dari masyarakat terhadap pelaksanaan pemilu, komentar atau pendapat yang disampaikan akan sangat beragam dimulai dari dukungan terhadap pelaksanaan pemilu, penggiringan opini publik, ujaran kebencian dan komentar-komentar lainnya. Kemajuan teknologi saat ini mengakibatkan penyampaian pendapat dapat dengan mudah dipublikasikan melalui media sosial, salah satunya adalah melalui media twitter, twitter menjadi salah satu media sosial yang paling sering digunakan masyarakat dalam mengemukakan pendapatnya karena dianggap bebas. Oleh karena itu, pada penelitian ini diusulakan pemataan sentimen atau opini masyarakat tentang Pilpres melalui X-Twitter, baik itu positif, negatif, atau netral dengan menggunakan Term Frequency-Inverse Document Frequency (TF-IDF) dan metode Self-Organizing Maps (SOM). Dari hasil penelitian didapatkan bahwa Algoritme TF-IDF dan Self-Organizing Maps (SOM) dengan sentimen cuitan pengguna Twitter dengan Hasil pengujian masing-masing model dengan menggunakan confusionmatrix didapatkan rata-rata accuracy sebesar 81%, precision 80,3%, recall 81%, dan f-measure 80%.