Hendri Maja Saputra
Research Center for Electrical Power and Mechatronics, Indonesian Institute of Sciences, Komp. LIPI Bandung, Jl. Sangkuriang, Gd. 20. Lt. 2, Bandung 40135

Published : 16 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 10 Documents
Search
Journal : Mechatronics, Electrical Power, and Vehicular Technology

Pengurangan Subsidi BBM dan Polusi Udara Melalui Kebijakan Program Konversi dari BBM ke BBG Untuk Kendaraan di Propinsi Jawa Barat Susanti, Vita; Hartanto, Agus; Subekti, Ridwan Arief; Saputra, Hendri Maja; Rijanto, Estiko; Hapid, Abdul
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.963 KB) | DOI: 10.14203/j.mev.2010.v1.43-52

Abstract

The  number  of  vehicle  that  use  oil  (BBM)  is  increasing  every  year  in  Indonesia  while  national  oil  reserve become smaller, so that the oil should be imported. The impact of using oil are increasing subsidy and air pollution.  Thus, it is now becoming important to replace oil with another environmentally friendly energy, one of them is gas (BBG). Based on the number of vehicle and infrastructure in gas pipeline, part of northern West Java potentially can  be  chosen  for  the  implementation  of  conversion  program  to  gas  (BBG).  The number  of  vehicle  in  potential regions  such  as  Depok,  Cibinong,  Bogor,  Bekasi,  Cikarang,  Karawang,  Purwakarta,  Cirebon,  and  Bandung  are around 875,505 units. From these data, we simulated the potential profit to be gained each year by converting 10% for the first year and increasing it to 5% for every year. By investing 3.16 trillion for conversion, 14.9 trillion can be achieved in  the  form  of  fuel  subsidy  savings.  In  addition,  emission  reduction  converted  to  a  CDM  (clean development  mechanism)  can  become  local  revenues.  Total CDM generated during 5 years predicted is of U.S $ 772,385. From this study, it can be concluded that converting oil (BBM) to gas (BBG) is highly beneficial. 
DC Brushless Motor Control Design and Preliminary Testing for Independent 4-Wheel Drive Rev-11 Robotic Platform Saputra, Roni Permana; Ardiansyah, Rizqi Andry; Mirdanies, Midriem; Santoso, Arif; Nugraha, Aditya Sukma; Muqorobin, Anwar; Saputra, Hendri Maja; Susanti, Vita; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 2 (2011)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (714.52 KB) | DOI: 10.14203/j.mev.2011.v2.85-94

Abstract

This paper discusses the design of control system for brushless DC motor using microcontroller ATMega 16 that will be applied to an independent 4-wheel drive Mobile Robot LIPI version 2 (REV-11). The control system consists of two parts which are brushless DC motor control module and supervisory control module that coordinates the desired command to the motor control module. To control the REV-11 platform, supervisory control transmit the reference data of speed and direction of motor to control the speed and direction of each actuator on the platform REV-11. From the test results it is concluded that the designed control system work properly to coordinate and control the speed and direction of motion of the actuator motor REV-11 platform. 
Accuracy analysis of geometrical and numerical approaches for two degrees of freedom robot manipulator Saputra, Hendri Maja; Mirdanies, Midriem; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 7, No 2 (2016)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2319.664 KB) | DOI: 10.14203/j.mev.2016.v7.105-112

Abstract

Analysis of algorithms to determine the accuracy of aiming direction using two inverse kinematic approaches i.e. geometric and numeric has been done. The best method needs to be specified to precisely and accurately control the aiming direction of a two degrees of freedom (TDOF) manipulator. The manipulator degrees of freedom are azimuth (Az) and elevation (El) angles. A program has been made using C language to implement the algorithm. Analysis of the two algorithms was done using statistical approach and circular error probable (CEP). The research proves that accuracy percentage of numerical method is better than geometrical method, those are 98.63% and 98.55%, respectively. Based on the experiment results, the numerical approach is the right algorithm to be applied in the TDOF robot manipulator.
IMU Application in Measurement of Vehicle Position and Orientation for Controlling a Pan-Tilt Mechanism Saputra, Hendri Maja; Abidin, Zainal; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 1 (2013)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1030.099 KB) | DOI: 10.14203/j.mev.2013.v4.41-50

Abstract

This paper describes a modeling and designing of inertial sensor using Inertial Measurement Unit (IMU) to measure the position and orientation of a vehicle motion. Sensor modeling is used to derive the vehicle attitude models where the sensor is attached while the sensor design is used to obtain the data as the input to control the angles of a pan-tilt mechanism with 2 degrees of freedom. Inertial sensor Phidget Spatial 3/3/3, which is a combination of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer, is used as the research object. Software for reading the sensor was made by using Matlabâ„¢. The result shows that the software can be applied to the sensor in the real-time reading process. The sensor readings should consider several things i.e. (a) sampling time should not be less than 32 ms and (b) deviation ratio between measurement noise (r) and process noise (q) for the parameters of Kalman filter is 1:5 (i.e. r = 0.08 and q = 0.4).
Algorithm of 32-bit Data Transmission Among Microcontrollers Through an 8-bit Port Mirdanies, Midriem; Saputra, Hendri Maja; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 6, No 2 (2015)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (458.849 KB) | DOI: 10.14203/j.mev.2015.v6.75-82

Abstract

This paper proposes an algorithm for 32-bit data transmission among microcontrollers through one 8-bit port. This method was motivated by a need to overcome limitations of microcontroller I/O as well as to fulfill the requirement of data transmission which is more than 10 bits. In this paper, the use of an 8-bit port has been optimized for 32-bit data transmission using unsigned long integer, long integer, and float types. Thirty-two bit data is extracted intobinary number, then sent through a series of 8-bit ports by transmitter microcontroller. At receiver microcontroller, the binary data received through 8-bit port is reconverted into 32 bits with the same data type. The algorithm has been implemented and tested using C language in ATMega32A microcontroller. Experiments have been done using two microcontrollers as well as four microcontrollers in the parallel, tree, and series connections. Based on the experiments, it is known that the data transmitted can be accurately received without data loss. Maximum transmission times among two microcontrollers for unsigned long integer, long integer, and float are 630 μs, 1,880 μs, and 7,830 μs, respectively. Maximum transmission times using four microcontrollers in parallel connection are the same as those using two microcontrollers, while in series connection are 1,930 μs for unsigned long integer, 5,640 μs for long integer, and 23,540 μs for float. The maximum transmission times of tree connection is close to those of the parallel connection. These results prove that the algorithm works well.
Control of Pan-tilt Mechanism Angle using Position Matrix Method Saputra, Hendri Maja; Santoso, Arif; Mirdanies, Midriem; Windarwati, Vikita; Nayanti, Riastus; Maulana, Lukni
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 2 (2013)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.278 KB) | DOI: 10.14203/j.mev.2013.v4.109-116

Abstract

Control of a Pan-Tilt Mechanism (PTM) angle for the bomb disposal robot Morolipi-V2 using inertial sensor measurement unit, x-IMU, has been done. The PTM has to be able to be actively controlled both manually and automatically in order to correct the orientation of the moving Morolipi-V2 platform. The x-IMU detects the platform orientation and sends the result in order to automatically control the PTM. The orientation is calculated using the quaternion combined with Madwick and Mahony filter methods. The orientation data that consists of angles of roll (α), pitch (β), and yaw (γ) from the x-IMU are then being sent to the camera for controlling the PTM motion (pan & tilt angles) after calculating the reverse angle using position matrix method. Experiment results using Madwick and Mahony methods show that the x-IMU can be used to find the robot platform orientation. Acceleration data from accelerometer and flux from magnetometer produce noise with standard deviation of 0.015 g and 0.006 G, respectively. Maximum absolute errors caused by Madgwick and Mahony method with respect to Xaxis are 48.45º and 33.91º, respectively. The x-IMU implementation as inertia sensor to control the Pan-Tilt Mechanism shows a good result, which the probability of pan angle tends to be the same with yaw and tilt angle equal to the pitch angle, except a very small angle shift due to the influence of roll angle..
Rancang Bangun Sistem Kontrol Mekanisme Pelacakan Matahari Beserta Fasilitas Telekontrol Hemat Energi Mirdanies, Midriem; Ardiansyah, Rizqi Andry; Saputra, Hendri Maja; Nugraha, Aditya Sukma; Rijanto, Estiko; Santoso, Adi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 2, No 1 (2011)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (678.862 KB) | DOI: 10.14203/j.mev.2011.v2.31-40

Abstract

Solar energy produced by concentrated solar heat collector panels requires tracking mechanisms for a more optimal direction. This paper presents the design and construction of a low energy solar tracking control system with telecontrol facilities. To accelerate the movement of the panel in always adjusting itself to the direction of the sun, a combination of the timer and light sensor was used. In this control system, the reference signal is taken from two pieces of light sensors while the feedback is taken from the position and temperature sensors. The program has been developed using C language and was implemented on the microcontroller ATMega8535 as the brain of the system. Telecontrol facilities for monitoring the data to a computer uses transceiver modules via RS-232 connection. A DC motor having power capacity of 0.74 watts was used and was clutched with 1:7,300 gearbox ratio. Experiments on light sensor characteristics and simulated movement of the panel were carried out. From the light sensor experiment it can be concluded that the sensor produces 0-4 volt output signal when bright 3.3-3.9 volts, when cloudy and 1.5-3.3 volts when sunny. From the simulation of panel movement, it is known that the solar tracking control system moves the panel and tracks the direction of the sun movement. 
Analysis of Inverse Angle Method for Controlling Two Degree of Freedom Manipulator Saputra, Hendri Maja; Abidin, Zainal; Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1184.577 KB) | DOI: 10.14203/j.mev.2012.v3.9-16

Abstract

Driver mechanism with two degree of freedom (MP 2-DK) is a robotic device that can be used for various applications such as turret drive system, gutling gun, launcher, radar antennas, and communications satellite antennas. The precision and the speed of a MP 2-DK are determined by its control system. The calculation inverse angle due to interference in six degree of freedom is necessary to control a MP 2 DK. This paper analyses three calculation methods of inverse angle which are iteration method using Jacobian matrix, reduction of matrix equations using positioning geometry, and an analytical derivation using a rotation matrix. The simulation results of the three methods showed that the first and the third methods could visually demonstrate three rotational disturbances, whereas the second method could only demonstrate the pitch and yaw (PY) disturbances. The third method required less processing time than the first and the second methods. The best method based on this research was the method of rotation matrix.
Three axis deviation analysis of CNC milling machine Subagio, Dalmasius Ganjar; Subekti, Ridwan Arief; Saputra, Hendri Maja; Rajani, Ahmad; Sanjaya, Kadek Heri
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 10, No 2 (2019)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3373.202 KB) | DOI: 10.14203/j.mev.2019.v10.93-101

Abstract

The manufacturing technology has developed rapidly, especially those intended to improve the precision. Consequently, increasing precision requires greater technical capabilities in the field of measurement. A prototype of a 3-axis CNC milling machine has been designed and developed in the Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (RCEPM-LIPI). The CNC milling machine is driven by a 0.4 kW servo motor with a spindle rotation of 12,000 rpm. This study aims to measure the precision of the CNC milling machine by carrying out the measurement process. It is expected that the CNC milling machine will be able toperform in an optimum precision during the manufacturing process. Accuracy level testing is done by measuring the deviations on the three axes namely X-axis, Y-axis, and Z-axis, as well as the flatness using a dial indicator and parallel plates. The measurement results show the deviation on the X-axis by 0.033 mm, the Y-axis by 0.102 mm, the Z-axis by 0.063 mm, and the flatness of the table by 0.096 mm, respectively. It is confirmed that the deviation value is within the tolerance standard limits set by ISO 2768 standard. However, the calibration is required for this CNC milling machine to achieve more accurate precision. Furthermore, the design improvement of CNC milling machine and the application of information technology in accordance with Industry 4.0 concept will enhance the precision and realibility.
Three-axis flexible tube sensor with LSTM-based force prediction for alignment of electric vehicle charging ports Saputra, Hendri Maja; Pahrurrozi, Ahmad; Baskoro, Catur Hilman Adritya Haryo Bhakti; Nor, Nur Safwati Mohd; Ismail, Nanang; Rijanto, Estiko; Yazid, Edwar; Zain, Mohd Zarhamdy Md; Darus, Intan Zaurah Mat
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 2 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.1104

Abstract

This paper introduces a novel three-axis flexible tube sensor designed for force measurement in electric vehicle (EV) charging port alignment, utilizing long short-term memory (LSTM) networks. The research aims to develop and validate a flexible and accurate sensor system capable of predicting multi-axis forces during alignment. The sensor integrates a magnetic sensor at the center of a flexible tube to capture three-dimensional (3-D) magnetic field variations corresponding to force changes. Fabricated using thermoplastic polyurethane (TPU) via 3-D printing technology, the sensor leverages machine learning to predict force values along the , , and  axes ( , , ). Finite element method (FEM) analysis was conducted to assess the deflection characteristics of the flexible tube under various force conditions. Experimental results demonstrate that integrating LSTM significantly enhances the accuracy of force prediction, achieving an R² score exceeding 97 % for all axes, with mean squared error (MSE) values of 0.2819 for the -axis, 0.3567 for the -axis, and 2.8086 for the -axis. The sensor is capable of measuring forces up to 30 N without exceeding its elastic limits. These findings highlight the sensor’s potential for improving alignment accuracy and reliability in automated EV charging systems.