Claim Missing Document
Check
Articles

Sentiment Classification for Film Reviews by Reducing Additional Introduced Sentiment Bias Fery Ardiansyah Effendi; Yuliant Sibaroni
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 5 (2021): Oktober2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (681.241 KB) | DOI: 10.29207/resti.v5i5.3400

Abstract

Film business and its individual reviews cannot be separated and film review sites such as IMDb is a credible source of reviews posted in public forums. With IMDb site reviews being unstructured and bias-heavy, classification methods by reducing additional sentiment bias is needed to create a balanced classification with lower polarity bias. Elimination of additional sentiment bias will improve the model as polarity is defined by non-bias method, resulting in models correctly defined which sequences of words is either positive or negative. This research limits the dataset by 50.000 rows of randomly extracted reviews from the IMDb website using dataset preparation methods such as Preprocessing, POS-Tagging, and Word Embeddings. Then preprocessed data is used in classification methods such as ANN, SWN, and SO-Cal. This paper also used bias processing methods such as Hyperparameter Tuning and BPM, with outputs evaluated using Accuracy and PBR metrics. This research yields 77.39 % for ANN, 66.32% for BPM, 75.6% for SO-Cal, and 76.26% for Hybrid classification. Best PBR resulted in two lexicon-based methods on 0.0009 for BPM, and 0.00006 for SO-Cal. More advanced model configuration in ANN can improve the model, and much complex lexicon models will be a future in the research topic.
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization Fatihah Rahmadayana; Yuliant Sibaroni
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 5 (2021): Oktober2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (283.651 KB) | DOI: 10.29207/resti.v5i5.3457

Abstract

Government policy on a problematic topic can lead to pros and cons, including the implementation of work from home during the COVID-19 pandemic in Indonesia. Lots of social media users express their opinions through social media, such as Twitter. Using Twitter API, data on Twitter can be obtained freely, so it can be utilized for sentiment analysis. Therefore, this study contains an analysis of public sentiment on the work from home policy using various preprocessing methods and Support Vector Machine with randomized search optimization. The result shows that the use of the acronym expansion method, slang word translation, and emoji translation in the preprocessing stage can increase the F1 Score value. The best F1 score results obtained were 83.362%. The results of the preprocessing method are used to predict unlabeled data. Prediction results show that 62.35% of tweets have positive sentiments, on the contrary, 37.65% of tweets have negative sentiments. So, it can conclude that most netizens support the policy of work from home.
Multi-Aspect Sentiment Analysis Hotel Review Using RF, SVM, and Naïve Bayes based Hybrid Classifier I Putu Ananda Miarta Utama; Sri Suryani Prasetyowati; Yuliant Sibaroni
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 5, No 2 (2021): April 2021
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v5i2.2959

Abstract

In the hotel tourism sector, of course, it cannot be separated from the role of social media because tourists tend to share experiences about services and products offered by a hotel, such as adding pictures, reviews, and ratings which will be helpful as references for other tourists, for example on the media online TripAdvisor. However, tourists' many experiences regarding a hotel make some people feel confused in determining the right hotel to visit. Therefore, in this study, an aspect-based analysis of reviews on hotels is carried out, which will make it easier for tourists to determine the right hotel based on the best category aspects. The dataset used is the TripAdvisor Hotel Reviews dataset which is already on the Kaggle website. And has five aspects, namely Room, Location, Cleanliness, Registration, and Service. A review analysis was carried out into positive and negative categories using the Random Forest, SVM, and Naive Bayes based Hybrid Classifier methods to solve this problem. In this study the Hybrid Classifier method gets better accuracy than the classification using one algorithm on multi-aspect data, namely the Hybrid Classifier got an average accuracy 84%, Naïve Bayes got an average accuracy 82.4%, Random Forest got an average accuracy 82.2%, and use SVM got an average accuracy 81%
Performance Analysis of ACO and FA Algorithms on Parameter Variation Scenarios in Determining Alternative Routes for Cars as a Solution to Traffic Jams Yuliant Sibaroni; Sri Suryani Prasetiyowati; Mitha Putrianty Fairuz; Muhammad Damar; Rafika Salis
JOIN (Jurnal Online Informatika) Vol 7 No 1 (2022)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v7i1.797

Abstract

This study proposes several alternative optimal routes on traffic-prone routes using Ant Colony Optimization (ACO) and Firefly Algorithm (FA). Two methods are classified as the metaheuristic method, which means that they can solve problems with complex optimization and will get the solution with the best results. Comparison of alternative routes generated by the two algorithms is measured based on several parameters, namely alpha and beta in determination of the best alternative route. The results obtained are that the alternative route produced by FA is superior to ACO, with an accuracy of 88%. This is also supported by the performance of the FA algorithm which is generally superior, where the resulting alternative route is shorter in distance, time, running time and  there is no influence on the alpha parameter value. But in each iteration, the number of alternative routes generated is less. The contribution of this research is to provide information about the best algorithm between ACO and FA in providing the most optimal alternative route based on the fastest travel time. The recommended alternative path is a path that is sufficient for cars to pass, because the selection takes into account the size of the road capacity.
Sentiment Analysis Of Development Jakarta-Bandung High-Speed Train Using Twitter Social Media With BNN Method Arya Pratama Anugerah; Yuliant Sibaroni
JURIKOM (Jurnal Riset Komputer) Vol 9, No 3 (2022): Juni 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v9i3.4135

Abstract

The Jakarta-Bandung high-speed train is one of the infrastructure development projects currently being carried out by the Indonesian government. The project is a large project that requires a long processing time and very large costs. Therefore, infrastructure development has reaped a lot of public opinions, both positive and negative. The purpose of writing this Final Project is to analyze sentiment on public opinion about the construction of the Jakarta-Bandung high-speed train. With data sourced from Twitter social media, the data will be analyzed in three classes, namely positive, negative, and neutral classes where the weighting will use the TF-IDF. The classification method used in this study is the Backpropagation Neural Network method. The best results were obtained in this study using a hyper tuning scenario with an accuracy of 74.56%.
Analisis Trending Topik Twitter dengan Fitur Ekspansi FastText Menggunakan Metode Logistic Regression Izzan Faikar Ramadhy; Yuliant Sibaroni
JURIKOM (Jurnal Riset Komputer) Vol 9, No 1 (2022): Februari 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v9i1.3791

Abstract

Twitter is a social media that contains information such as the latest news, a person's biography, and tweets from users. Twitter has a feature called trending topics that serves to find out information on certain topics that are currently popular. In fact, it is often difficult to understand what trending topics are happening. Therefore, it is necessary to classify trending topics into a general category. This study aims to analyze and classify Twitter topic trending information by dividing several topic trend labels using the FastText expansion feature method. The FastText expansion feature is used to reduce vocabulary mismatches in a tweet. The classification process of this system will use the Logistic Regression method. The best results were obtained in this study using test data scenarios, 90:10 training data with 76.39% accuracy. The most discussed trending topic from September 2021 to October 2021 was politics with a percentage of 15.83%, followed by religion 12.64% and technology 10.42%
Performance Analysis of Hybrid Machine Learning Methods on Imbalanced Data (Rainfall Classification) Aditya Gumilar; Sri Suryani Prasetiyowati; Yuliant Sibaroni
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 3 (2022): Juni 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.331 KB) | DOI: 10.29207/resti.v6i3.4142

Abstract

This study proposes several methods to analyze the performance of the hybrid machine learning method using Voting and Stacking on rainfall classification. The two hybrid methods will combine five classification methods, namely Logistic Regression, Support Vector Machine, Random Forest, Artificial Neural Network, and eXtreme Gradient Boosting. The data used is Bandung City rainfall data for the years 2005 until 2021. The hybrid method is classified as an ensemble, which means combining several individual classification models to improve the performance of the built model. Voting algorithm has weaknesses in imbalanced data, while stacking does not. The results show that by combining five machine learning methods on an imbalanced dataset, the Stacking algorithm obtains an accuracy value of 99.60%. Meanwhile, with the addition of the SMOTE technique, the accuracy increases to 99.71%. This is supported by the performance of the Stacking method which is superior because it takes the best classification value for each individual model and can overcome the imbalance. Model evaluation does not only focus on accuracy, but also precision, recall, and f1-score. The contribution of this research is to provide information about the best Hybrid method between Voting and Stacking in obtaining model performance results on rainfall classification.
Identify User Behavior based on Tweet Type on twitter Platform using Mean Shift Clustering Saniyah Nabila Fikriyah; Yuliant Sibaroni
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 6, No 3 (2022): Juli 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v6i3.4329

Abstract

Twitter is a social media where users often get information from various fields. There are many problems with Twitter. For example, in Indonesia's political field, discussing the performance of the President of Indonesia and his staff who are not good, students and the public hold demonstrations in DKI Jakarta. They want the President of Indonesia to step down from office. When the problem is trending, some users have positive (praise) and negative (blasphemous) behavior, which is interesting to discuss in this study. Before the method stage, data preprocessing is carried out so that the data to be used becomes more efficient. Word weighting is also done using the TF-IDF Vectorizer. Then, the clustering method with the Mean Shift algorithm is applied to identify user behavior based on the type of tweet. This method can find information from a vast data set in a short time. Based on this algorithm, the results obtained are 67 clusters from the Mean Shift algorithm. From a total of 67 clusters obtained, 5 clusters were taken to identify user behavior. User behavior in clusters 0, 2, 3, and 4 is negative because it discusses the people who want the President of the Republic of Indonesia to resign from his position immediately. Meanwhile, user behavior in cluster 1 is positive because the topics discussed only information that the people of Lampung are already in Jakarta.
Identify User Behavior based on Tweet Type on Twitter Platform using Agglomerative Hierarchical Clustering Prawiro Weninggalih; Yuliant Sibaroni
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 6, No 3 (2022): Juli 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v6i3.4342

Abstract

Information dissemination can occur through any media, including social media. One of the social media that has become a forum for disseminating information is Twitter. Through user-uploaded tweets, not a few comments are positive (praise/support) or negative (blasphemy), depending on the tweet. This study chooses politics as a discussion. Data crawling was carried out to obtain a dataset and raise the topic of Joko Widodo as a President of Indonesia, whose work is considered poor by the public, so they want him to resign immediately. This makes it interesting because we can identify user behavior from tweets about the topic. The choice of this topic was based on a lot of users who discussed it, so it was trending on Twitter. Preprocessing stage aims to eliminate missing values. After that, it then goes through the feature extraction process. The agglomerative Hierarchical Clustering Algorithm of the clustering method is applied in this research. This algorithm can directly set how many clusters to facilitate the clustering process. The result obtained 3 clusters with different user behavior. Negative user behavior is found in cluster 1, while positive user behavior is found in cluster 2.
DHF Incidence Rate Prediction Based on Spatial-Time with Random Forest Extended Features Elqi Ashok; Sri Suryani Prasetiyowati; Yuliant Sibaroni
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 4 (2022): Agustus 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (752.279 KB) | DOI: 10.29207/resti.v6i4.4268

Abstract

This study proposes a prediction of the classification of the spread of dengue hemorrhagic fever (DHF) with the expansion of the Random Forest (RF) feature based on spatial time. The RF classification model was developed by extending the features based on the previous 2 to 4 years. The three best RF models were obtained with an accuracy of 97%, 93%, and 93%, respectively. Meanwhile, the best kriging model was obtained with an RMSE value of 0.762 for 2022, 0.996 for 2023, and 0.953 for 2024. This model produced a prediction of the classification of dengue incidence rates (IR) with a distribution of 33% medium class and 67% high class for 2022. 2023, the medium class is predicted to decrease by 6% and cause an increase in the high class to 73%. Meanwhile, in 2024, it is predicted that there will be an increase of 10% for the medium class from 27% to 37% and the distribution of the high class is predicted to be around 63%. The contribution of this research is to provide predictive information on the classification of the spread of DHF in the Bandung area for three years with the expansion of features based on time.
Co-Authors Abduh Salam Adhe Akram Azhari Aditya Andar Rahim Aditya Firman Ihsan Aditya Gumilar Aditya Iftikar Riaddy Adiwijaya Agi Maulana Al Ghazali, Nabiel Muhammad Alfauzan, Muhammad Fikri Alya, Hasna Rafida Andrew Wilson Angger Saputra, Revelin Annisa Aditsania Apriani, Iklima Aqilla, Livia Naura Ardana, Aulia Riefqi Arista, Dufha Arminta, Adisaputra Nur Arya Pratama Anugerah Asramanggala, Muhammad Sulthon Atikah, Balqis Sayyidahtul Attala Rafid Abelard Aufa, Rizki Nabil Aulia Rayhan Syaifullah Aurora Az Zahra, Elita Azmi Aulia Rahman Bunga Sari Chamadani Faisal Amri Chindy Amalia Claudia Mei Serin Sitio Damar, Muhammad Damarsari Cahyo Wilogo Delvanita Sri Wahyuni Derwin Prabangkara Desianto Abdillah Devi Ayu Peramesti Dhina Nur Fitriana Dhina Nur Fitriana Diyas Puspandari Ekaputra, Muhammad Novario Ellisa Ratna Dewi Ellisa Ratna Dewi Elqi Ashok Erwin Budi Setiawan Fadhilah Nadia Puteri Fadli Fauzi Zain Fairuz, Mitha Putrianty Faiza Aulia Rahma Putra Farizi, Azziz Fachry Al Fatha, Rizkialdy Fathin, Muhammad Ammar Fatihah Rahmadayana Fatri Nurul Inayah Fauzaan Rakan Tama Feby Ali Dzuhri Fery Ardiansyah Effendi Ferzi Samal Yerzi Fhira Nhita Fitriansyah, Alam Rizki Fitriyani Fitriyani F. Fitriyani Fitriyani Fitriyani Fitriyani Gilang Brilians Firmanesha Gusti Aji, Raden Aria Gutama, Soni Andika Hanif, Ibrahim Hanurogo, Tetuko Muhammad Hanvito Michael Lee Hawa, Iqlima Putri Haziq, Muhammad Raffif I Gusti Ayu Putu Sintha Deviya Yuliani I Putu Ananda Miarta Utama Ibnu Muzakky M. Noor Indra Kusuma Yoga Indwiarti irbah salsabila Irfani Adri Maulana Irma Palupi Islamanda, Muhammad Dinan Izzan Faikar Ramadhy Izzatul Ummah Janu Akrama Wardhana Jauzy, Muhammad Abdurrahman Al Kemas Muslim Lhaksmana Kinan Salaatsa, Titan Ku Muhammad Naim Ku Khalif Lanny Septiani Laura Imanuela Mustamu Lesmana, Aditya Lintang Aryasatya Lisbeth Evalina Siahaan Made Mita Wikantari Mahadzir, Shuhaimi Maharani, Anak Agung Istri Arinta Mahmud Imrona Maulida , Anandita Prakarsa Mitha Putrianty Fairuz Muhamad Agung Nulhakim Muhammad Arif Kurniawan Muhammad Damar Muhammad Ghifari Adrian Muhammad Hadyan Baqi Muhammad Ikram Kaer Sinapoy Muhammad Kiko Aulia Reiki Muhammad Novario Ekaputra Muhammad Rajih Abiyyu Musa Muhammad Reza Adi Nugraha Muldani, Muhamad Dika Nanda Ihwani Saputri Naufal Alvin Chandrasa Ni Made Dwipadini Puspitarini Niken Dwi Wahyu Cahyani Novitasari, Ariqoh Nuraena Ramdani Okky Brillian Hibrianto Okky Brillian Hibrianto Pernanda Arya Bhagaskara S M Pilar Gautama, Hadid Prasetiyowati, Sri Prasetyo, Sri Suryani Prasetyowati, Sri Sulyani Prawiro Weninggalih Priyan Fadhil Supriyadi Purwanto, Brian Dimas Puspandari, Dyas Putra, Daffa Fadhilah Putra, Ihsanudin Pradana Putra, Maswan Pratama Putri, Dinda Rahma Putri, Pramaishella Ardiani Regita Rachmadania Irmanita Rafik Khairul Amin Rafika Salis Rahmanda, Rayhan Fadhil Raisa Benaya Revi Chandra Riana Rian Febrian Umbara Rian Putra Mantovani Ridha Novia Ridho Isral Essa Ridho, Fahrul Raykhan Rifaldy, Fadil Rifki Alfian Abdi Malik Riski Hamonangan Simanjuntak Rizki Annas Sholehat Rizky Fauzi Ramadhani Rizky Yudha Pratama Rizky, Muhammad Zacky Faqia Salis, Rafika Salsabila, Syifa Saniyah Nabila Fikriyah Saragih, Pujiaty Rezeki Satyananda, Karuna Dewa Septian Nugraha Kudrat Septian Nugraha Kudrat Serly Setyani Shyahrin, Mega Vebika Sinaga, Astria M P Siti Inayah Putri Siti Uswah Hasanah Sri Suryani Prasetiyowati Sri Suryani Prasetyowati Sri Suryani Sri Suryani Sri Utami Sujadi, Cika Carissa Suryani Prasetyowati, Sri Syarif, Rizky Ahsan Umulhoir, Nida Varissa Azis, Diva Azty Viny Gilang Ramadhan Vitria Anggraeni WAHYUDI, DIKI Widya Pratiwi Ali Winico Fazry Wira Abner Sigalingging Zaenudin, Muhammad Faisal Zaidan, Muhammad Naufal Zain, Fadli Fauzi ZK Abdurahman Baizal