Claim Missing Document
Check
Articles

Found 4 Documents
Search

Kajian Metal–Organic Frameworks (MOFS) sebagai Material Baru Pengantar Obat Qonita Awliya Hanif; Reva Edra Nugraha; Witri Wahyu Lestari
ALCHEMY Jurnal Penelitian Kimia Vol 14, No 1 (2018): March
Publisher : UNIVERSITAS SEBELAS MARET (UNS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/alchemy.14.1.8218.16-36

Abstract

Metal–Organic Frameworks (MOFs) merupakan material berpori baru yang berpotensi sebagai pengantar dan pelepas lambat obat. Strukturnya yang fleksibel, ukuran pori kristalin yang teratur, dan sisi koordinasi yang beragam merupakan beberapa kelebihan dari MOFs yang mendukung dalam enkapsulasi berbagai obat. Metode yang dapat digunakan untuk sintesis MOFs diantaranya nanopresipitasi, solvothermal, reverse microemulsion, dan reaksi solvothermal dengan template surfaktan. Karakterisasi material hasil sintesis maupun profil setelah enkapsulasi (loading) dapat dilakukan menggunakan Scanning Electron Micrscope (SEM), Transmission Electron Microscope (TEM), Differential Scanning Calorymetry (DSC), Fourier Transform Infra Red Spectroscopy (FTIR), dan Powder X-Ray Diffraction (PXRD). Metode loading obat terdiri dari dua kategori, yakni penggabungan agen biomedis secara langsung dan loading secara post synthesis. Sebelum MOFs diaplikasikan, perlu dilakukan aktivasi dan penempelan material obat. Pengujian lepas lambat dapat dijalankan pada beberapa kondisi seperti dalam Simulated Body Fluid (SBF), Phosphate Buffer Saline (PBS), Bovine Serum Albumin (BSA) maupun simulasi menggunakan Grand Canonical Monte Carlo (GCMC). Pengujian secara in vivo dan in vitro juga dapat dilakukan untuk mengetahui dampaknya pada tubuh makhluk hidup dan aktivitasnya terhadap sel patogen. Kombinasi organik linker dan ion logam pusat yang berbeda akan menghasilkan ukuran pori, fleksibilitas, kapasitas loading, profil pelepasan obat, toksisitas, dan kemampuan menginhibisi yang berbeda pula. Pada review kali ini akan dibahas tentang kajian singkat terkait struktur dan desain MOFs, bio-MOFs, nano bio MOFs, strategi sintesis, dan strategi loading dan pelepasan obat untuk aplikasi dalam biomedis. Selanjutnya akan diberikan beberapa contoh aplikasi yang sudah dilakukan sejauh ini misalnya beberapa jenis MOFs yang sudah dienkapsulasi dengan beberapa material obat, seperti 5-fluoracil, ibuprofen, doxorubicin, dan dikaji waktu pelepasannya dan interaksinya dengan permodelan komputasi.Study of Metal–Organic Frameworks (MOFs) as a Novel Material for Drug Delivery. Metal–Organic Frameworks (MOFs) are a novel class of porous material that has wide potential applications including in drug delivery and slow release. Its flexible structure, regular crystalline pore size, and various coordination sites are some of the advantages of supporting MOFs properties in the encapsulation of various drugs. Various methods can be used for the MOFs synthesis include nanoprecipitation, solvothermal, reverse micro emulsion, and surfactant-templated solvothermal. Both characterization for synthesized materials and profile after encapsulation can be done using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Differential Scanning Calorimetry (DSC), Fourier Transform Infra-Red Spectroscopy (FTIR), and Powder X-Ray Diffraction (PXRD). The drug loading method consists of two categories, namely the direct incorporation of biomedical agents and post-synthesis method. Before MOFs are applied in biomedical application, activation and attachment of medicinal materials should be performed. Meanwhile, for slow release testing can be run on several conditions such as in Simulated Body Fluid (SBF), Phosphate Buffer Saline (PBS), Bovine Serum Albumin (BSA) and simulation using Grand Canonical Monte Carlo (GCMC). In vivo and in vitro testing can also be done to determine the impact on the body of living creatures and their activity on pathogen cells. Different organic linker and metal center combinations will result in pore size, flexibility, loading capacity, drug release profiles, toxicity, and different inhibiting ability. Herein, we will discuss a brief review of the structure and design of MOFs, bio-MOFs, nano-bio MOFs, synthesis, drug loading and release strategies for applications in biomedicine. Furthermore, there will be some examples of applications that have been done so far, e.g. some types of MOFs that have been encapsulated with some medicinal materials, such as 5-fluorouracil, ibuprofen, doxorubicin, and reviewed its release time and interaction with computational modeling.
Sintesis Grafena Oksida Tereduksi Terdoping Nitrogen Dan Sulfur Dari Amonium Tiosianat Sebagai Elektroda Lawan Pada Sistem Dye Sensitized Solar Cell (DSSC) Sayekti Wahyuningsih; Ari Handono Ramelan; Mochammad Fuad; Qonita Awliya Hanif
ALCHEMY Jurnal Penelitian Kimia Vol 16, No 1 (2020): March
Publisher : UNIVERSITAS SEBELAS MARET (UNS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/alchemy.16.1.34587.126-139

Abstract

Pada penelitian ini telah berhasil disintesis komposit rGO-NS melalui pendopingan pada material berbasis grafena oksida tereduksi (rGO) dengan penambahan amonium thiosianat sebagai sumber dopan N dan S. Dopan N dan S pada rGO mempengaruhi struktur rGO yang ditunjukkan dengan pergeseran puncak difraktogram pada 2θ=24,97 (hkl 002). Spektra Fourier transform infrared (FTIR) material rGO-NS memberikan serapan puncak baru dari vibrasi C=N pada daerah 1501-1516 cm-1 dan dari vibrasi C-N serta C-S pada daerah 1130 – 1146 cm-1. Morfologi rGO-NS berupa lembaran tipis dua Dimensional (2D) bertumpuk dengan jarak antar lapis tertentu. Pengujian I-V measurement menggunakan Keithley 2602A, sistem DSSC dengan material rGO-NS digunakan sebagai bahan elektroda lawan menunjukkan efisiensi terbesar mencapai 0,1268%, dengan peningkatan efisiensi sebanyak 11,32 kali apabila dibandingkan dengan Pt.Synthesis of Reduced Graphene Oxide doped with Nitrogen and Sulfur from Ammonium Thiocyanate as a Counter Electrode in Dye-Sensitized Solar Cell (DSSC) System. In this research, the rGO-NS composite was successfully synthesized through doping on reduced graphene oxide based-materials (rGO) with the addition of ammonium thiocyanate as nitrogen (N) and sulfur (S) source. N and S dopant influence the rGO structure indicated by the peak shifting into 2θ=24.97 (hkl 002). The Fourier transform infrared (FTIR) spectrum of material rGO-NS reveals new bands which correspond to C=N vibration within 1501 – 1516 cm-1 and C–N vibration together with C–S at area between 1130-1146 cm-1. The morphology of rGO-NS shows that the material consists of many 2 Dimensional (2D) thin layers. The current and voltage (I-V) measurement using Keithley 2602A with material rGO-NS as a counter electrode on DSSC system, demonstrates that the highest efficiency is 0.1268%. This performance is 11.32 times higher compare to the DSSC system with Pt.
Rice Husk Ash: A Promising Heavy Metal Adsorbent For Wastewater Treatment Kumalasari, Meiyanti Ratna; Beladona, Siti Unvaresi Misonia; Gracia, Amanda Natania; Sugiyani, Tina; Wulandari, Oktavia Rahmi; Imelya, Marsya; Syaima, Husna; Hanif, Qonita Awliya
Walisongo Journal of Chemistry Vol 7, No 1 (2024): Walisongo Journal of Chemistry
Publisher : Department of Chemistry Faculty of Science and Technology Walisongo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/wjc.v7i1.18852

Abstract

The primary polluter of the environment is liquid waste. Silica is one substance that can be utilized to minimize water pollution. Silica can be produced from agricultural biomass waste, such as rice husk ash. This study investigated the preparation of rice husk ash and the optimal synthesis method for producing bio-silica. A literature review of studies on rice husk ash, heavy metals, and adsorbents was conducted. The findings indicated that boiling rice husk at 800°C and washing with HCl produced high-purity silica. XRD (X-ray diffraction), FT-IR (Fourier transform infrared) spectrophotometers, and ED-XRF (Energy Dispersive X-ray fluorescence) were employed to characterize the rice husk ash. The precipitation, sol-gel, acidification, and hydrothermal methods were compared for bio-silica synthesis. The synthesized bio-silica can be used as a heavy metal absorbent for various metal ions, including Pb2+, Zn2+, Mn2+, Cu2+, As3+, As5+, and Cd2+.
Rice Husk Ash: A Promising Heavy Metal Adsorbent For Wastewater Treatment Kumalasari, Meiyanti Ratna; Beladona, Siti Unvaresi Misonia; Gracia, Amanda Natania; Sugiyani, Tina; Wulandari, Oktavia Rahmi; Imelya, Marsya; Syaima, Husna; Hanif, Qonita Awliya
Walisongo Journal of Chemistry Vol. 7 No. 1 (2024): Walisongo Journal of Chemistry
Publisher : Department of Chemistry Faculty of Science and Technology UIN Walisongo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/wjc.v7i1.18852

Abstract

The primary polluter of the environment is liquid waste. Silica is one substance that can be utilized to minimize water pollution. Silica can be produced from agricultural biomass waste, such as rice husk ash. This study investigated the preparation of rice husk ash and the optimal synthesis method for producing bio-silica. A literature review of studies on rice husk ash, heavy metals, and adsorbents was conducted. The findings indicated that boiling rice husk at 800°C and washing with HCl produced high-purity silica. XRD (X-ray diffraction), FT-IR (Fourier transform infrared) spectrophotometers, and ED-XRF (Energy Dispersive X-ray fluorescence) were employed to characterize the rice husk ash. The precipitation, sol-gel, acidification, and hydrothermal methods were compared for bio-silica synthesis. The synthesized bio-silica can be used as a heavy metal absorbent for various metal ions, including Pb2+, Zn2+, Mn2+, Cu2+, As3+, As5+, and Cd2+.