Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Waste Technology

Biogas production from bioethanol waste: the effect of pH and urea addition to biogas production rate Budiyono Budiyono; Iqbal Syaichurrozi; Siswo Sumardiono
Waste Technology Vol 1, No 1 (2013)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (463.532 KB) | DOI: 10.14710/1.1.1-5

Abstract

Anaerobic treatment is a good choice to treat bioethanol waste due to the high concentration of COD content for producing biogas as renewable energy. The purposes of this study were to study the effect of addition nitrogen source and pH control to biogas production. The laboratory scale-anaerobic digestions used in this experiment were operated in batch system and at room temperature. In determination of optimum pH, bioethanol waste and rumen fluid fed into digesters with initial pH 6.0; 7.0 and 8.0. Influent COD : N ratio (in form of urea) used in this study was 700:7 in compare to control.  The results showed that initial pH 7.0 produced the most biogas with total biogas 3.81 mL/g COD. While initial pH 6 and pH 8 had total biogas 3.25 mL/g COD and 3.49 mL/g COD respectively. At urea addition, biogas formed had 52.47% greater than that of at without urea addition (control variable). Controlled pH caused biogas was produced until 90-day investigation and might continue to be produced. Total biogas of control variable (without urea addition) and variable with ratio COD:N=700:7 influent were 11.07 mL/g COD and 11.41 mL/g COD respectively.Doi: http://dx.doi.org/10.12777/wastech.1.1.1-5Citation:  Budiyono, Syaichurrozi, I.  and Sumardiono, S. 2013. Biogas production from bioethanol waste: the effect of pH andurea addition to biogas production rate. Waste Technology 1(1):1-5. Doi: http://dx.doi.org/10.12777/wastech.1.1.1-5
The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR) Maria Octoviane Dyan; Gita Permana Putra; Budiyono Budiyono; Siswo Sumardiono; Tutuk Djoko Kusworo
Waste Technology Vol 3, No 1 (2015)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (783.332 KB) | DOI: 10.14710/3.1.7-13

Abstract

Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW) with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic process is the right process for slaughterhouse wastewater treatment because of high content of organic compounds that can be utilized by anaerobic bacteria as a growth medium. Some research has been conducted among abattoir wastewater treatment using anaerobic reactors such as ABR, UASB and ASBR. Our research focuses on the search for the optimum results decline effluent COD levels to match the quality standards limbah and cow rumen fluid with biodigester ABR (Anaerobic Batch Reactor). The variables used were PH of 6, 7, and 8, as well as the concentration ratio of COD: N is 400:7; 450:7, and 500:7. COD value is set by the addition of N derived from urea [CO(NH2) 2]. COD levels will be measured daily by water displacement technique. The research’s result for 20 days seen that optimum PH for biogas production was PH 7,719 ml. The optimum PH for COD removal is PH 6, 72.39 %. The operation mode COD:N for biogas production and COD removal is 500:7, with the production value is 601 ml and COD removal value is 63.85 %. The research’s conclusion, the PH optimum for biogas production was PH 7, then the optimum PH for COD removal is PH 6. The optimum operation mode COD:N for biogas production and COD removal was 500:7
Biogas Production from Solid Jamu Waste Production Traditional with Anaerobic Process Liquid State – Anaerobic Digestion (LS - AD) Method Siswo Sumardiono; Bakti Jos; Abdullah Farhan; Nearya Sondang; Heri Cahyono
Waste Technology Vol 10, No 2 (2022)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/10.2.50-57

Abstract

Biogas is a flammable gas produced from the fermentation process of organic materials by anaerobic bacteria. The principle of making biogas is the anaerobic decomposition of organic matter (closed from free air) to produce gas, mostly methane (CH4) and carbon dioxide (CO2). One source of organic material that can be used as raw material for making biogas is the waste contents of the beef rumen. The anaerobic decomposition process is assisted by a number of microorganisms, especially methane-producing bacteria. The first generation of biogas is biogas produced by food derivatives and the process is still conventional. One of the agricultural wastes that can be developed into biogas is jamu waste. Jamu dregs contain high crude fiber, which is 39.72% of the dry weight. Where crude fiber is thought to help in the fermentation process. This research will examine the effect of time on biogas production with the composition of the raw material for jamu waste, the effect of pre-treatment of C/N ratio on biogas production and the effect of Total Solid Substrate on biogas production. Biogas production is carried out through hydrolysis, acidogenesis and methanogenesis stages. The total solid ratio are set in Liquid State condition with 3, 7, 11 and 15% variant of total solid content and the pretreatment of the nutrient ratio of the substrate C/N 20, 22, 24 and 26. The biogas formation process was carried out for 2 months, with a quantitative test response in the form of biogas volume and CODMn removal per 2 days.
Sustainable Batik Wastewater Treatment using Advanced PVDF/NiFe@SiO2 Nanocomposite Photocatalytic Membrane Kusworo, Tutuk Djoko; Budiyono, Budiyono; Sumardiono, Siswo
Waste Technology Vol 12, No 1 (2024)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/11.2.112-119

Abstract

The primary concern associated with the Batik industry lies in the presence of pollutant dyes that contribute to environmental contamination. Addressing this issue involves exploring various wastewater treatment methods, with membrane technology being a viable approach. In this study, a photocatalytic material, NiFe@SiO2, synthesized through the sol-gel technique, was incorporated into a PVDF membrane. Characterization results from SEM surface, indicated that the PVDF/NiFe@SiO2 membrane displayed superior characteristics compared to other membranes. The addition of the NiFe@SiO2 photocatalyst increased membrane porosity, hydrophilicity, water absorption capacity, and affinity towards water molecules. The PVDF/NiFe@SiO2 membrane exhibited enhanced performance in terms of permeate flux, pollutant rejection, stability, recyclability, and durability. Notably, the fabricated photocatalytic membrane demonstrated superior antifouling performance and flux recovery capability when operating under UV radiation. The study also delved into the influence of wastewater pretreatment on antifouling membrane performance. The modified membrane successfully reduced fouling levels on the membrane by enhancing FRR from ~70% to ~90%. This insight into how pretreatment affects the antifouling properties of wastewater opens avenues for innovative solutions and enhanced design strategies to improve the efficiency and sustainability of wastewater treatment processes. Future research endeavors could focus on maximizing the potential of the bentonite adsorbent in wastewater pretreatment and exploring the full capabilities of the NiFe@SiO2 photocatalyst in enhancing the photocatalytic and antifouling performance of the membrane.