Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Communications in Science and Technology

Corncob residue as heterogeneous acid catalyst for green synthesis of biodiesel: A short review Mardina, Primata; Wijayanti, Hesti; Tuhuloula, Abubakar; Hijriyati, Erita; Sarifah
Communications in Science and Technology Vol 6 No 2 (2021)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.6.2.2021.460

Abstract

The utilization of an appropriate catalyst in biodiesel production depends on the free fatty acid content of vegetable oil as a feedstock. Recently, heterogeneous acid catalysts are widely chosen for biodiesel production. However, these catalysts are non-renewable, highly expensive and low stability. Due to the aforementioned drawbacks of commercial heterogeneous acid catalyst, a number of efforts have been made to develop renewable green solid acid catalysts derived from biomass. Published literature revealed that the application of the biomass derived solid acid catalysts can achieve up to 98% yield of biodiesel. This article focused on corncob as raw material in solid acid catalyst preparation for biodiesel production. The efficient preparation method and performance comparation are discussed here. The corncob derived heterogeneous acid catalysts provides an environmentally friendly and green synthesis for biodiesel production.
Evaluation of stirring rate and pH on phenolic compounds recovery from palm kernel shell heavy phase bio-oil Wijayanti, Hesti; Mardina, Primata; Tuhuloula, Abubakar; Tri Ananda, Lidya; Aulia Rauf, Zahwa Syafa; Lutfi, Auliyani; Fadil Riyadi, Syahril
Communications in Science and Technology Vol 8 No 1 (2023)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.8.1.2023.1119

Abstract

This study aims to develop an efficient separation method for phenolic compounds derived from the heavy phase of bio-oil produced by the pyrolysis of palm kernel shell. Two variables were investigated during phenolic compound extraction using dichloromethane, i.e., stirring rate and pH of the solution. In both variables, the composition, yield, and distribution coefficient of the extracted phase were investigated. The results showed that the phenolic compounds' extraction favors high stirring rate and it obtained more results at more acidic conditions (lower pH). The best conditions for phenolic compounds were at 300 rpm of stirring rate and pH 4, which resulted in 77.88 % of yield and a 1.13 distribution of coefficient for the total phenols. The findings of this research will contribute to the better separation of phenolic compounds in bio-oil for improving its fuel characteristics as well as producing value-added chemicals.