Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Informatika

ALGORITMA C4.5 UNTUK MEMPREDIKSI KELAYAKAN PENERIMA BANTUAN PANGAN NON TUNAI Rizal Abi Islahudin; Sidik Rahmatullah; Asep Afandi; Sriyani Safitri
Jurnal Informatika Vol 22, No 2 (2022): Jurnal Informatika
Publisher : IIB Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/ji.v22i2.3367

Abstract

Pemerintah telah menyiapkan program Bantuan Pangan Non Tunai (BPNT) untuk membantu masyarakat miskin dan membutuhkan. Bantuan Pangan Non Tunai (BPNT) harus disalurkan secara tepat, teratur, dan transparan untuk memastikan bahwa penerima bantuan memang benar-benar mereka yang membutuhkan. Oleh karena itu, diperlukan suatu sistem yang dapat mengubah data menjadi informasi dan mengidentifikasi calon penerima bantuan sembako nontunai maupun yang tidak berhak (BPNT). Sistem prediksi yang akan dibuat pada proyek ini menggunakan RapidMiner 7.1 untuk pengujian dan Algoritma C4.5, metode klasifikasi dari data mining. Hasil Implementasi Data Mining dengan metode Algoritma C4.5 untuk memprediksi kelayakan penerima dan hasil penerima bantuan pangan nontunai (BPNT) diperoleh nilai akurasi prediksi sebesar 99%, yang kemudian divalidasi oleh aplikasi RapidMiner 7.1 dengan akurasi hasil 98,50%.
PERBANDINGAN PENGOLAHAN DATA PREDIKSI PERSEDIAAN GAS LPG 3KG MENGGUNAKAN REGRESI LINIER BERGANDA DAN K-MEANS Annisa Rismanitanti; Rima Mawarni; Sidik Rahmatullah; Dwi Marisa Efendi; Sulis Nurbaiti
Jurnal Informatika Vol 22, No 2 (2022): Jurnal Informatika
Publisher : IIB Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/ji.v22i2.3376

Abstract

he oil and natural gas sector is a sector that is used with great importance for Indonesia's national development. An interesting commodity to watch out for in the oil and gas industry is liquefied petroleum gas (LPG). LPG is a hydrocarbon gas that has been liquefied under pressure to facilitate storage, transportation, and handling and the main ingredients consist of propane/C3, butane/C4 or can be mixed to produce mixed LPG..At this time PT. BLORA MUSTIKA does not focus on when household needs increase and when not, the meaning of this is that LPG gas data is not used properly and is only recorded, this of course makes PT BLORA MUSTIKA unable to predict demand from sub-distributors and results in frequent an empty supply of LPG gas causing difficulties for the community to obtain 3 Kg LPG gas. This problem can be calculated and compared with the Multiple Linear Regression and K-Means methods.By using the Multiple Linear Regression and K-Means method, it is hoped that it will make it easier for PT. BLORA MUSTIKA in determining demand predictions from sub-distributors so that there is no shortage of LPG gas supplies and which method can be obtained which is more effective and efficient.