Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Science Technology (JoSTec)

Impact of the fuel mixture ratio of AVGAS 100LL and RON 92 fuel on combustion characteristics Sabam Danny Sulung; Daniel Dewantoro Rumani; Ikhwanul Qiram; Muhammad Nur Cahyo Hidayat Nasrullah; Untung Lestari Nur Wibowo
Journal of Science Technology (JoSTec) Vol. 5 No. 1 (2023): Journal of Science Technology (JoSTec)
Publisher : PT Inovasi Pratama Internasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55299/jostec.v5i1.478

Abstract

AVGAS 100LL is an aviation fuel used in piston engine aircraft, particularly in training aircraft such as the Cessna 172S with Lycoming engines. The use of lead in this fuel can have various health-related concerns. Therefore, reducing the use of leaded fuel has become a solution to address these issues. This study aimed to investigate the combustion characteristics of AVGAS fuels, including AVGAS 100%, AVGAS 75% + PERTAMAX 25%, and AVGAS 50% + PERTAMAX 50%. The research involved conducting combustion tests using a Bunsen burner. The results showed that the addition of PERTAMAX to AVGAS significantly influenced the temperature, color, flame height, and flame area produced. The temperature values were higher for AVGAS 100% compared to AVGAS mixed with PERTAMAX. On the other hand, the flame height and flame area were lower for AVGAS 100% compared to the blended fuels. These findings indicate that the addition of PERTAMAX affects the combustion characteristics of AVGAS fuels. Further studies are recommended to explore and expand our understanding of the effects of blending AVGAS with alternative fuels.
Performance Tests of Cessna 172S Magnetos Under Various Thermal Conditions Muhammad Nur Cahyo Hidayat Nasrullah; Sabam Danny Sulung; Untung Lestari Nur Wibowo; Ikhwanul Qiram
Journal of Science Technology (JoSTec) Vol. 5 No. 1 (2023): Journal of Science Technology (JoSTec)
Publisher : PT Inovasi Pratama Internasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55299/jostec.v5i1.628

Abstract

Magneto serves as the ignition source in the combustion process of piston aircraft engines. Typically, spark-ignition aircraft like the Cessna 172SP are equipped with two ignition systems (dual magnetos). Dual magnetos are installed so that if one system fails, the aircraft can still continue its flight. During the engine startup process, the magneto plays a significant role as the ignition source for the initial combustion before the aircraft engine comes to life. In the case experienced by pilots at the Indonesian Civil Pilot Academy Banyuwangi, starting the engine became challenging when the aircraft had been previously used for a flight. Therefore, this research is conducted to address the underlying causes of this issue. The parameters examined in this research include outside air temperature (OAT), Cylinder Head Temperature (CHT), and Exhaust Gas Temperature (EGT). Data were collected regarding the duration of the engine startup process. The duration time for starting the engine was found to be the highest at an exhaust gas temperature of 135 °F, a cylinder head temperature of 180 °F, and an outside air temperature of 35 °F, with a duration time of 6.8 seconds. Conversely, the shortest engine startup duration was observed at an exhaust gas temperature of 75 °F, a cylinder head temperature of 75 °F, and an outside air temperature of 26 °F, resulting in a duration time of 1.6 seconds.